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Abstract
We present the first application of the mining minima algorithm to protein-small molecule
binding. This end-point approach use an empirical force field and implicit solvent models, treats
the protein binding-site as fully flexible and estimates free energies as sums over local energy
wells. The calculations are found to yield encouraging agreement with experiment for three sets of
HIV-1protease inhibitors and a set of phosphodiesterase 10a inhibitors. The contributions of
various aspects of the model to its accuracy are examined, and the Poisson-Boltzmann correction
is found to be the most critical. Interestingly, the computed changes in configurational entropy
upon binding fall roughly along the same entropy-energy correlation previously observed for
smaller host-guest systems. Strengths and weaknesses of the method are discussed, as are the
prospects for enhancing accuracy and speed.

1 Introduction
The appeal and promise of structure-based drug design has grown in recent decades as
computer power has increased and as the three-dimensional structures of proteins have
become easier to solve by crystallographic and NMR methods (e.g.1–6). Indeed, advances in
protein crystallography are now extending the reach of structure-based approaches into the
medically critical yet previously inaccessible realm of G-protein coupled receptors7–11.
Computational tools for the selection or design of compounds to bind a targeted protein also
have advanced substantially in recent years (e.g.12–17), but there is still a need for more
reliable methods of ranking candidate ligands of a targeted protein according to affinity18,19.

Approaches to modeling protein-small molecule interactions may be viewed, very broadly,
as falling along a spectrum of complexity. At one end lie the simplest and most efficient
docking methods (e.g.20–28), which seek to identify the single most stable conformation of a
protein-ligand complex, and estimate binding affinity with a scoring function that is often
conceptualized as a sum of free energy contributions from, for example, hydrogen-bonding,
the hydrophobic effect, and Coulomb interactions. (Recent progress in the use of relatively
detailed electronic structure calculations as part of protein-ligand scoring functions also
deserves mention (e.g.29–36).) These methods offer the speed required to rapidly screen large
compound databases for promising candidate ligands, but typically neglect or, arguably,
oversimplify, significant free energy contributions, such as the energetic and entropic
consequences of ligand preorganization or the lack thereof. At the other end of the spectrum
lie free energy pathway methods, like free energy perturbation and thermodynamic
integration, which employ relatively detailed Monte Carlo or molecular dynamics methods,
typically using explicit solvent models, to compute the absolute or relative work of binding
for candidate ligands (e.g.37–47). Such approaches have the potential to capture much of the
relevant physics, but still tend to be too computationally demanding for routine use in drug-
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design projects. Toward the middle of the spectrum of complexity lie so-called “end-point”
free energy methods, such as MMPBSA48–51 and LIE52–55 These aim to provide greater
physical detail than docking and scoring methods by accounting for both the bound and
unbound states of the protein-ligand system, while potentially avoiding the computational
costs of freeenergy simulations because they do not involve computing the work of a
multistep binding process or “alchemical”37 ligand change.

The present study focuses on one of a class of end-point methods56, including mining
minima (here M2)57–59 and MINTA60, which approximate the thermodynamics of binding
by identifying a manageably small set of conformations (local energy minima) of the free
and bound protein and ligand. The free energy associated with each local energy minimum
of the ligand, receptor or complex, is evaluated based upon its depth and width, and the
contributions of the energy wells are combined to yield an estimate of the overall free
energy. A potential merit of this approach is that one may employ conformational search
approaches that aggressively cross energy barriers to identify the stable conformations,
rather than having to wait for barriers to be crossed through thermal motion, as in typical
simulation-based methods. On the other hand, in order to avoid a combinatorial explosion of
conformations, such methods must limit the number of explicit degrees of freedom by using
an implicit solvent model, and, for large receptors, treating part of the system as restrained
or rigid. Applications of such models to binding in host-guest systems have shown
encouraging agreement with experiment57,59–62, suggesting that this approach, used with
current energy models, captures much of the relevant physical chemistry of molecular
recognition. The host-guest studies also have yielded unexpected insights into role of
configurational entropy in binding, providing evidence that these entropy contributions are
commensurate with more familiar energy terms and may differ enough across ligands to
significantly affect their affinity rankings. It is thus of considerable interest to apply this
approach to protein-small molecule binding.

We have now developed an implementation of the M2 algorithm, VM2, that is suitable for
protein-ligand affinity calculations. The software includes more aggressive search
algorithms than those used for the prior host-guest calculations, and allows part of the target
protein to be held rigid while a user-defined binding site region, including a ligand and any
number of additional solvent molecules or cofactors, is treated as flexible. This paper
describes the algorithm and characterizes its performance for 3 groups of compounds
binding two very different proteins, the human immunodeficiency virus 1protease (HIVP)
and phosphodiesterase 10a (PDE 10a).

2 Methods
2.1 Application of Mining Minima to protein ligand binding

2.1.1 Overview—As previously described57,59, the second-generation mining minima
method, M2, computes the standard free energy (or, more properly, the standard chemical
potential) of a bound complex, AB, and the free molecules, A and B, and obtains the
standard binding free energy as the difference:

1

M2 is thus an “end-point” method12. In brief, The free energy, GX of a molecule or complex
X=A, B, or AB is estimated by summing local configuration integral contributions zi from
distinct energy wells (conformations) i
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2

Each local integral, zi, is obtained by computing the Hessian matrix with respect to bond-
angle-torsion coordinates at the corresponding local energy minimum, and applying an
enhanced harmonic approximation which accounts for anharmonicity along those
eigenvectors of the Hessian having eigenvalues up to 2 kcal/mol/xy, where x and y are either
Angstroms or radians, depending on the coordinates involved. Local energy minima are
found with an aggressive conformational search which, unlike typical molecular dynamics
simulations, can readily cross energy barriers (see below). The energy model comprises an
empirical force field and an implicit solvent model.

The present study uses an implementation of M2 that is suitable for protein-ligand modeling.
In particular, it allows part of the receptor (the “real set”) to be held rigid while treating only
a user-defined binding-site region (the “live set”) as flexible. The rigid part of the receptor
acts as a framework that holds the flexible binding site region in the right overall
conformation, while the flexibility of the binding site allows its conformation to adapt to
different ligands. The present implementation also affords additional, more aggressive,
conformational search methods and permits the complex to include more than one bound
molecule; for example, it can include a drug-like ligand and one or more explicit water
molecules. A ligand or solvent molecule can, optionally, be restrained in a spherical region
near a desired location by applying a flat-bottomed energy well to one of its atoms:

3

Here k is the force-constant of the restraint, r is the location of the restrained atom, r0 is the
center of the flat-bottomed well, in coordinates rooted in the rigid part of the receptor,
Rrestraint is the radius of the restraint region, and p is a parameter controlling the “hardness”
of the energy wall around the energy well. A value of p = 12 was used in all calculations
presented here.

2.1.2 Conformational Search—The conformational search method is a variant of the
previously described Tork algorithm63, which in turn is inspired by the Low Mode search
method64,65. The search typically starts with a single initial conformation, although more
than one can be used. The conformation is energy-minimized to a local energy minimum,
and the second-derivative (Hessian) matrix of the energy in Cartesian coordinates is
computed, transformed into the Hessian for bond-angle-torsion coordinates, as previously
described63, reduced by elimination of rows and columns corresponding to bond-stretch and
bond-angle coordinates, and diagonalized. A “distortion mode” is then defined by choosing
a normalized eigenvector ei with a low eigenvalue vi, or a linear combination of two
normalized eigenvectors ei, ej with low eigenvalues vi, vj. The mode is then modified by
zeroing any eigenvector components less than 0.1. The system is distorted along this
distortion mode, and then 10 steps of quasi-Newton energy minimization are carried out
with the distorted atoms held fixed and the rest of the system free. If the final energy is less
than a threshold of Et and no torsional change has exceeded a user-defined threshold of ϕt,
then the process is repeated. When this iterative process crosses either the energy threshold
or the torsional threshold, the distorted conformation is fully energy-minimized to a local
energy minimum. Here, the 100 eigenvectors with the lowest eigenvalues were considered
“low”, the energy threshold, Et, was set to 2000 kcal/mol, and the torsional threshold, ϕt,
was set to 180°. For the pairwise distortions, the contribution of each eigenvector to the
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combined distortion vector, ecombo, was weighted according to the reciprocal of its
eigenvalue:

4

The present software implementation also includes two aggressive search methods. In one,
only the ligand is moved stepwise along its soft modes and, after each step, the live atoms of
the protein are energy-minimized for several steps so that they move out of the way of the
moving ligand. This process is iterated until an energy or displacement is reached, at which
point the entire system is energy-minimized. The second aggressive search method is the
same, except that only the protein is moved stepwise along its soft modes, while the ligand
is relaxed in response. These more aggressive methods are most appropriate for cases where
the binding modes are unknown, and was not used here because we wished to leave the
ligands' scaffolds close to their positions in the available crystallographic structures.

2.1.3 Monitoring Free Energy Convergence—The free energy calculation for the
protein, ligand or complex begins with a single energy-minimized conformation. As
diagrammed in the flow-chart in Figure 1, the algorithm then follows a convergent, iterative
procedure involving a series of “searches”, each composed of “cycles”, where each search is
run to convergence (Criterion 1 in flow-chart) and the overall set of searches is also run to
convergence (Criterion 2 in flow-chart). The first search is carried out as follows. The
starting conformation is used to seed a Tork conformational search (see prior section) and
thereby generate a set of new conformations. Any duplicate conformations are removed
from the list, and the configuration integral zi is computed for each of the N distinct local
energy minima and the free energy is obtained as

5

This completes the first cycle of the first search. All conformations from the current search
iteration are then superimposed and grouped into N clusters based upon the atomic root-
mean-square distances between conformations, and the lowest free energy conformation of
each cluster is used to start a new Tork conformational search. Thus, each cycle after the
initial one starts with N, rather than 1, initial conformation, but the algorithm is otherwise
the same. This procedure aims to generate a diversity of starting structures for the new cycle.
Duplicates are again removed, with reference to all conformations generated in the current
search, configuration integrals are computed for the remaining distinct conformations, and
the free energy is updated to reflect all distinct conformations found in the current cycle.
Additional cycles are run in this manner until the last cycle meets Criterion 1: it must lower
the free energy by less than 0.05 kcal/mol, and the last 3 cycles must cumulatively lower G
by less than .5 kcal/mol. At this point, the first search is considered to be converged. A new
search then begins from the lowest free energy conformation found in the prior search.
Additional searches are run until Criterion 2 is met; i.e., the last search must lower the free
energy by less than 0.05 kcal/mol. In the present calculations, the number of clusters, N, is
set to 4.

2.1.4 Energy model—The protein's potential energy as a function of conformation was
approximated with the CHARMM66 united-atom force field. For the ligands, we used
VeraChem's enhanced version of the Dreiding67 force field for bond-stretch, bond-angle,
and torsional terms. The Lennard-Jones terms were automatically assigned to those of
chemically related atoms in the CHARMM force field, and partial charges were assigned
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with the electronegativity equalization method Vcharge68. The topology files for the ligands
are provided in the Supplementary Material. During the conformational search procedure,
solvation is modeled with a generalized Born model (GB)69,70. The free energy of each
energy minimum is subsequently corrected, as previously described57, by subtracting its GB
energy and adding in the Poisson-Boltzmann/Surface Area (PB/SA) solvation energy, where
the Poisson-Boltzmann equation is solved with a fast finite difference code71,72. It is this
PB-corrected free energy that is checked to determine whether the new conformation is
more stable than prior conformations. Using the corrected free energy helps prevent the
search algorithm from finding conformations that are stable according to the GB model but
not according to the PB/SA model. The dielectric cavity radius of each atom is set to the
value of its Lennard-Jones parameters; i.e., to the distance at which the Lennard-Jones
energy of two atoms of this type has its local energy minimum.

2.2 Protein-Ligand Systems and Setups
We applied the method described above to 24 HIV-1 protease inhibitors and 20
phosphodiesterase 10a (PDE 10a) inhibitors. The protease inhibitors are divided into two
groups. Group 1 is a heterogeneous collection of drugs and non-clinical compounds with
measured binding free energies of −19.2 to −6.6 kcal/mol, as determined by calorimetric and
enzymatic Ki measurements cited in the caption of Table 2. Although these data derive from
six different research groups, their wide range of binding free energies reduces the
quantitative significance of methodologic variations among the groups. Group 1 is
subdivided into Group 1a compounds (Figure 2), which are known or presumed to bind with
a bridging “flap water”, and Group 1b compounds (Figure 3), cyclic and azacyclic ureas
which bind without a flap water. Group 2 (Figure 4) is a relatively homogeneous set of 10
compounds73 from a project aimed at discovering new protease inhibitors that would be
robust to mutational resistance, with binding free energies of −16.7 to −9.3 kcal/mol, based
upon enzymatic Ki data obtained by a single research group. The PDE 10a inhibitors74

possess a common chemical scaffold (Figure 5) and range from −11.5 to −9.2 kcal/mol of
binding free energy, also based upon Ki data obtained by a single research group.

The evaluation of a method of ranking ligand affinities should include ligand series for
which affinity is not strongly correlated with ligand size, so that the arguably trivial
tendency of many scoring functions to correlate with ligand size75 does not lead to an overly
optimistic assessment of the method. Here, the correlation coefficients (R values) of binding
free energy with the number of non-hydrogen atoms are 0.75, 0.63, 0.00 and 0.44 for the
Group 1a, Group 1b and Group 2 protease inhibitors and PDE 10a, respectively. We thus
have a mix of correlated and uncorrelated series, much as previously observed for a variety
of experimental datasets76.

Calculations for the Group 1 HIV protease calculations were based on PDB structure
1HVR77, which was solved with a bound cyclic urea inhibitor, while Group 2 calculations
used 2I0D73, which was solved with ligand AD81 of this group. Except as otherwise noted,
all crystallographic solvent molecules were omitted. For Group 1a ligands, an explicit flap
water was included with a flat-bottomed restraint on the water's oxygen atom, with R=0.5 Å,
k=1.0 kcal/mol/Å12. The location of the oxygen was obtained by superimposing the protein
parts of structures 1HVR and 2FDE78 (HIV protease with GW0385) and then using the
water coordinates from the superimposed 2FDE structure. Based on prior analyses Asp 25
was treated as protonated on oxygen and Asp 25' was treated as unprotonated for the Group
1a compounds79, while Asp 25 and 125 were both protonated for the Group 1b
compounds80. The initial bound conformation of each HIVP ligand was generated by
superimposing the common parts of its structures with the highest affinity compound in its
group.
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Calculations for the PDE 10a inhibitors were based on PDB structure 2OVV74, which was
solved with inhibitor 21 and is very similar to structure 2OVY74, which was solved with
inhibitor 29. Examination of these structures revealed that water 85 in 2OVV and 2OVY
appears to play a particularly important bridging role, as it is the only water within 3 Å of
both the ligand and the protein. Moreover, initial conformational searches with no
crystallographic waters generated conformations in which the ligand wandered from its
crystallographic location, whereas including water 85 with a flat-bottomed restraint
(R=0.5Å, k=1.0kcal/mol/Å12) centered on its crystallographic site caused the ligands to
remain close to their crystallographic locations. This water was therefore included in all
subsequent calculations, with the same restraining potential. Initial conformations of the
bound PDE 10a ligands were generated by superimposing them on the crystal conformation
of the tightest-binding ligand, 29 in 2OVY. The bound Zn and Mg atoms were part of the
real set and therefore treated as rigidly fixed. Both metals were treated as electrically
neutral, as were their first-shell histidine ligands. We do not know the actual protonation
states of the first-shell ligands, but we observed that adding +2 charge to both metals (while
keeping the first-shell histidines neutral) caused the conformational searches to yield grossly
incorrect ligand poses. Fortunately, although the scaffolds of these compounds lie about 7–8
Å from the metals, the closest atoms of variable substituents (R in Figure 5) lie at least 12.7
Å away from the metals, based upon the available crystal structures, and the substituents are
uncharged and mainly aromatic in nature. As a consequence, the detailed treatment of the
metal cluster is not expected to be critical in this series.

For both HIVP and PDE 10a, the live set – the set of binding-site atoms treated as mobile –
was defined as all atoms within 7 Å of any atom of any ligand. The real set – the set of
protein atoms treated as rigid and thus supporting the live set--comprised all protein residues
having any atom within 5 Å of any live-set atom. For the HIVP structures, the initial live
and real sets based on these criteria were symmetrized, so that both protein monomers would
have the same live and real sets. This was done by expanding, rather than contracting, the
live and real sets. All other protein atoms were deleted, in order to reduce the size of the
nonbonded pairlist and thus speed the calculations. In order to diminish any initial stress in
the starting conformations that might artifactually drive the binding site away from its
crystallographic starting conformation, the protein models were subjected to an initial
relaxation step in which both the live and real sets were temporarily treat as live, except for
the two metals, which were still held fixed; all protein residues having an atom within 5 Å of
any live atom were temporarily treated as real; and the entire temporary live set was energy-
minimized. Figures 6–8 highlight the live sets used in the present calculations. The program
VMD81 was used for all 3D molecular graphics in this paper.

3 Results
3.1 Free Energy Calculations

3.1.1 Group 1 HIVP Inhibitors—The computed binding free energies for the Group 1a
and Group 1b protease inhibitors are shifted relative to experiment, but correlate well
(correlation coefficient r~0.8), as shown by the scatter plots in Figure 2 and the linear
regression parameters and mean errors in Table 1. Interestingly, the computed free energies
of Group 1b run lower than those of Group 1a by about 10 kcal/mol. We surmise that this
offset stems primarily from the difference in the setup of the two protease structures. Thus,
as described in Methods, the Group 1a calculations include an explicit “flap” water molecule
and treat one of the catalytic aspartyls as ionized, whereas the Group 1b calculations omit
the flap water and treat both aspartyls as neutral. Table 2 provides information on the root-
mean-square deviation (RMSD) of the most stable computed conformations relative to
crystallographic structures, where available. Results are presented for the ligand alone, and
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for the entire mobile region. The results are rather mixed, with ligand-only RMSDs ranging
from 1.4 to 3.8. Examination of these structures indicates that the structural deviations are
primarily associated with extended substituents, rather than with core parts of the ligand that
interact with the central Asp groups and the flap Ile residue. (Atomic coordinates are
provided in the Supplementary Material.) Note that all Group 1 calculations were based
upon the same protein structure, 1HVR77, which was solved with bound XK263. It is also of
interest to examine the conformations found in the calculations. Figures 10 and 11 give a
sense for this range by overlaying representative conformations of the four most stable
conformational clusters found for the bound states of amprenavir (Group 1a) and XK263
(Group 1b). In both cases, the representative conformations may be viewed as minor
modulations of a basic binding mode.

3.1.2 Group 2 HIVP Inhibitors—The Group 2 inhibitors were all modeled based on PDB
structure 2I0D73, which was solved with bound AD81 from this series. The scatter plot of
calculation versus experiment, Figure 12, shows 9 nearly collinear points and one gross
outlier, which corresponds to inhibitor KB19. Corresponding linear regression parameters,
omitting KB19, are provided in Table 1. The mean deviation of calculation from experiment
for the Group 2 inhibitors, −7.1 kcal/mol, is similar to that for the Group 1a inhibitors, −5.1
kcal/mol, while the mean deviation of the Group 1b inhibitors is considerably greater, at
−16.5 kcal/mol. This similarity of the Group 2 results to the Group 1a results may stem from
the fact that the Group 1a and Group 2 calculations both included an explicit flap water and
treated the two catalytic aspartyls as having a net charge of −1. In contrast, the Group 1b
calculations did not include a flap water and treated the aspartyls as neutral. For those
compounds in Group 2 for which crystal structures are available, the RMSDs range from 1.9
to 2.4 for the ligand only, and from 2.0 to 2.8 for the entire mobile region. Compared with
the RMSDs for Group 1, these values are relatively moderate and uniform. This is not
unexpected, given the comparative uniformity of the compound series. The variation of the
computed structures across ligands is examined in Figure 13, which overlays the most stable
bound conformation computed for each of the 10. The conformations are all quite similar,
with most of the conformational differences localized in the variable substituents.

Examination of these bound conformations led to a potential explanation of why inhibitor
KB19 is an outlier in the scatter plot (Figure 14). Comparing with the conformation of
AD32, which also has a 4-acetyl substituent at the R2 location, we noticed that this
substituent lies in opposite orientations in the two compounds. That is, in the most stable
conformations computed for these two compounds, the oxygen of each lay on the methyl
carbon of the other. Because AD32 is not an outlier, we restarted the KB19 conformational
search from a conformation modeled on the most stable conformation of AD32. This led to a
conformation of the KB19 complex in which the 4-acetyl group is oriented as in AD32, and
whose energy is about 8 kcal/mol more stable than any found before. (See second KB19 line
(italic) in Table 2.) This lower energy brings KB19 largely into line with the other Group 2
compounds (Figure 12), and lowers its RMSD somewhat (Table 2).

3.1.3 PDE 10a Inhibitors—Computed and measured binding free energies for the 20
congeneric PDE 10a inhibitors are compared in Figure 14, and the corresponding linear
regression parameters and mean error are presented in Table 3. A significant correlation is
observed, and the correlation coefficient of 0.84 is similar to those obtained for the HIV
protease inhibitors (above). However, the slope of the linear fit is about half as great as that
obtained for the protease inhibitors. Figure 15 gives a sense for the conformational variation
among the 20 bound ligands via an overlay their most stable computed conformations, along
with mobile residues in the PDE 10a binding site. The common scaffold occupies a uniform
pose, while, not surprisingly, the variable substituent shows a wider range of positions. The
side-chains showing greatest conformational flexibility appear to be Met 251 and Met 252,
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which lie near the variable ligand substituent. The higher RMSD (Table 3) for compound 1,
relative to the other ligands with available crystal structures, 21 and 29, may result from the
facts that this compound is not based on the same chemical scaffold any of the other
compounds in the series (Figure 5), and that the protein structure used in the calculations
was solved with one of the other compounds.

3.2 Entropy and Energy
The Vm2 method yields not only overall binding free energies, but also changes in mean
energy components and in the configurational entropy. These breakdowns are provided in
Tables 2 and 3 for the HIV protease and PDE 10a inhibitors, respectively. As in prior
mining minima calculations on simpler host-guest systems, the net free energy changes are
balances of considerably larger energy and entropy contributions. In particular, the change
in the Boltzmann averaged energy, Δ<E>, is considerably more negative than the binding
free energy, ΔGo while the configurational entropy makes a markedly positive contribution,
−TΔSo, and thus strongly opposes binding. The binding free energy can thus be viewed as a
small difference between large numbers and hence potentially subject to large uncertainties
on this account. It is thus worth emphasizing that the mining minima algorithm does not
generate the free energy by computing energy and entropy separately, and then adding them.
Rather, it yields the free energy directly, and this can later be decomposed into entropy and
energy. This integrated approach represents a potential advantage over methods which
compute the two terms separately. It is also important to recognize that, although Δ<E>
omits the configurational entropy, it implicitly includes the change in solvent entropy via the
implicit solvent model. As a consequence, the entropy values reported here should not be
directly compared with experimental entropy changes of binding for these systems.

The computed entropic penalties range from 25 to 37 kcal/mol and average 30 kcal/mol. The
energy changes are of greater magnitude and are negative in sign (average −44 kcal/mol), as
indeed they must be if the computed binding free energies are to be negative, since
ΔGo=Δ<E>−TΔSo. In addition, the range of energy changes (Δ<E>), −63 to −27 kcal/mol,
is about three times broader than the range of entropic contributions. Not surprisingly, both
the entropy and energy contributions for these protein-ligand systems are considerably
larger, by factors of ~2.8, than those computed previously for smaller host-guest
systems57,59,61,62, where −TΔSo and Δ<E> averaged about 11 kcal/mol and −16 kcal/mol.

The importance of the configurational entropy to the correlations between calculation and
experiment reported above may be examined by comparing the measured binding free
energies with the computed values of Δ<E> instead of ΔGo. Figures 19 and 20 provide such
comparisons in graphical format for the HIV protease inhibitors, and Figure 21 provides the
comparison for the PDE 10a inhibitors; the corresponding linear regression parameters and
mean errors are provided in Table 4 (first 4 rows of data). (The Group 2 regression again
omits the outlier KB19.) Overall, the new correlation coefficients tend to be somewhat lower
than those found for the full computed free energy, with the mean R lower by 15%,
especially for PDE 10a. Even more striking are the large reductions in the regression slopes
by a mean factor of 0.59, and the markedly more negative mean errors by about −30 kcal/
mol. These systematic changes highlight the fact that the computed entropies strongly
oppose binding and that the entropic penalty correlates with the binding energy, as further
analyzed lower in this section.

The values of Δ<E> considered in the prior paragraph are Boltzmann-weighted averages,
where the Boltzmann weighting is based upon the compute free energy of each energy well.
Computing such average energies thus requires the full mining minima algorithm. It is also
of interest to examine the even simpler energy-based approach of simply subtracting the
global energy minima of the free protein and ligands from those of the protein-ligand
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complexes. The resulting energy changes, ΔEmin, are not averages and they entirely exclude
any consideration of configurational entropy. However, they do require conformational
search and do include the PB/SA correction to the GB solvation energy (see Methods).
These energy differences are compared with experimental binding free energies in the last 4
rows of Table 4. The results are much the same as for Δ<E>.

Prior mining minima calculations for host-guest systems yielded a striking correlation
between configurational entropy and energy57,59,61. It is thus of interest to put the energy
and entropy results for the present protein-ligand calculations into the context of these prior
host-guest results. As shown in Figure 22, the protein ligand results may be viewed as
broadly extending the approximately linear entropy-energy relationship found for the host-
guest systems. This observation is consistent with the observation that linear regressions of
measured binding free energy versus computed binding energy yield lower slopes and more
positive y-intercepts than linear regressions of measured binding free energy versus
computed binding free energy (Tables 2 and 4). This is because including the entropic
contribution reduces the range of the computed values and makes the computed results more
positive (opposing binding).

A more careful look at Figure 22 indicates that the PDE 10a data follow the host-guest trend
particularly closely. The combined host-guest and PDE 10a data yield the following
regression fit: −TΔSo = −0.88 ΔE−1.56. Since ΔGo= ΔE−TΔSo, this regression
corresponds to the energy-free energy relationship ΔGo=0.12 ΔE−1.56, which indicates that
most of the energetic driving force for binding is predicted to be canceled by a proportionate
entropic penalty. The entropic penalties for the HIVP systems fall below the trend
established by the host-guest and PDE 10a systems, indicating that a smaller proportion of
binding energy is canceled by entropy losses. Although it is tempting to interpret this result
as implying that the HIVP systems tend to overcome entropic compensation, it might
equally well indicate that keeping much of the protein rigid, as done in these calculations,
has led to a disproportionate underestimate of entropic losses for HIVP, relative to PDE 10a.
The HIVP points in the entropy-energy scatter plot also show considerably greater scatter
than the PDE or host-guest results; the reasons for this are unclear.

3.3 Mode Scanning and Poisson-Boltzmann Corrections
The PB/SA solvation energy correction and the Mode-Scanning correction to the harmonic
approximation in free energy in energy well (see Methods) make the calculations somewhat
more complicated and time-consuming. It is therefore of interest to examine the extent to
which they contribute to accuracy. Accordingly, Tables 5 presents linear regression analyses
of measured binding free energies vs. binding free energies computed without the Mode
Scanning and PB/SA corrections, respectively. Omitting Mode Scanning has minimal effect
on the results (Table 5, top), but omitting the PB/SA correction seriously damages the
correlations (Table 5, bottom). This is clearly due to the PB, rather than the SA part, given
the comparatively small and uniform values of the latter (Tables 2, 3).

3.4 Convergence and Timings
The progress of the computed free energies of the various protein-ligand complexes as a
function of the number of conformational search cycles (see Methods) is displayed in
Figures 16–18 for the Group 1 and Group 2 HIV protease inhibitors and PDE 10a inhibitors,
respectively. The graphs all trend downward because accounting for additional
conformations in the mining minima method can only lower the overall free energy. Thus,
the sudden downward jumps in the graphs result from the discovery of new conformations
of markedly lower free energy as the search proceeds. Note that the absolute free energies
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displayed in these graphs are not physically interpretable on their own, because; the free
energies of the free proteins and their respective ligands have not been subtracted out.

The free energy calculations reported here required an average of about 4.5 hours per search
cycle on a 2.6 GHz dual-core AMD Opteron 2218 CPU with 4 GB RAM. Roughly 80% of
this time is spent on conformational search and 20% on calculating the free energies of
individual energy wells. The CPU time for computing the free energies of the individual
energy wells partitions approximately as follows: 20% harmonic free energy approximation,
20% Mode Scanning, and 60% PB/SA solvation correction.

4 Discussion
These first applications of the mining minima approach to protein-ligand binding yield
encouraging correlations between calculated and measured binding free energies for
inhibitors of two enzymes, HIV-1 protease and PDE 10a. There are several features of the
present approach that may help it achieve these correlations. First, it is based upon a
physics-based energy model comprising both an empirical force field and and an implicit
solvent model. Second, it accounts for the conformational flexibility of not only the ligand
but also the side-chain and backbone atoms in the protein binding site. Third, the free energy
of the ligand is computed and subtracted from the free energy of the complex, so that the
computed binding free energies can account for the degree of ligand preorganization.
Finally, the method accounts for changes in configurational entropy, not just energy.

The significance of the entropic contribution was tested by artificially omitting it. In the
present calculations, neglecting the computed change in configurational entropy tends to
weaken the correlation with experiment, although this is not seen uniformly. In particular,
omitting entropy for the Group 1b HIVP inhibitors if anything slightly strengthens the
correlation with experiment. It is interesting to speculate that this might be related to the
greater rigidity and structural uniformity of these compounds. It is also of scientific interest
that the calculations yield correlations between the change in configurational entropy on
binding and the change in energy, very much like those seen in prior mining minima
calculations for host-guest systems, and highly analogous to the entropy-enthalpy
compensation seen in many experimental studies82,83. This observation is consistent with
the tendency of purely energetic physics-based models to overestimate the scale of protein-
ligand binding affinities59 since such models omit a systematically varying free energy
penalty.

The limitations of this study also deserve comment. One is that we have simplified the
challenge of achieving correlation with experiment by focusing primarily on congeneric
compound series and taking advantage of existing knowledge about each series, such as by
including the flap water in two series of HIVP inhibitors. Also the rather mixed structural
RMSDs found for the Group 1a HIVP inhibitors are a concern. On the other hand, highly
accurate conformations may not be necessary in order to generate at least an approximate
ranking of binding energies over the ~15 kcal/mol range spanned by this set. (The
experimental affinity ranges are markedly smaller for Group 2 and especially for the PDE
10a system.) It is also worth noting that we have not simply re-docked each ligand into a
protein structure solved with that ligand, but have instead used a single protein structure for
all calculations within the ligand series. This approach provides a more challenging and real-
world test of the methodology. Finally, this is a retrospective validation study, and a full
evaluation of the method will require testing of prospective predictions. The results
presented here suggest that it will be worth making such an effort.
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The present calculations are time-consuming, yet, as with many other free energy methods,
there are still concerns regarding convergence. The convergence problem is highlighted by
the example of the HIVP inhibitor KB19, which appeared to be a gross outlier until we
manually adjusted its conformation and restarted the conformational search, upon which its
energy fell, and it came into line with the other Group 2 inhibitors. It is is essential to
improve this aspect of the method so that one can be more confident of obtaining converged
results. It is worth noting at the outset that the specific problem with KB19 could likely have
been prevented by adjustments to the run parameters of the existing conformational search
algorithm, and, indeed, we are still defining “best practices” for the use of this software. At
the same time, it will clearly be advantageous to speed the calculations in order to
accommodate more extensive conformational searches. One approach is to eliminate any
unneeded, time-consuming steps and thus leave more time for the conformational search.
Two possibilities were considered here: Mode Scanning and the PB/SA solvation correction.
Omitting Mode Scanning, which provides a correction to the anharmonicity of the energy
surface near the base of each energy well, made very little difference in the results, so it
would seem reasonably safe to omit this part of the procedure. On the other hand, this step
uses only about 2% of the total CPU time, and further testing might uncover cases where it
is important. Omitting the PB/SA correction, on the other hand, seriously damaged the
correlations of calculation with experiment. Thus, although this step is computationally
costly, it is indispensable. An alternative approach is to parallelize the calculations so that
more extensive conformational searches can be carried out at low cost. Our preliminary
efforts at fine-grained Open MP parallelization and at porting key loops to graphical
processor units (GPUs) indicate that substantial speedups can be achieved by these means. It
will also be of interest to determine whether the search algorithm itself can be enhanced,
such as by seeding it with candidate low-energy conformations generated with a simpler,
faster algorithm.

It is of interest to compare the present mining minima method with the MMPBSA approach,
because both are end-point methods that use a force-field and an implicit solvent model to
estimate binding free energies. One of the key differences is that mining minima simplifies
the calculations by treating only the protein binding site as flexible. Treating the entire
protein as flexible, as frequently done in MMBPSA calculations, in principle offers the
possibility of accounting fully for protein-wide energy changes on binding. However, in
practice, the large fluctuations of the energy of the entire protein makes it very difficult to
converge the energy difference on binding. As a consequence, this contribution to the
binding free energy is often completely discarded by using the single-trajectory MMPBSA
approach48,84. Focusing on the binding site allows mining minima to provide a detailed
accounting of changes in the binding site energy, which is expected to be the most important
part. Treating the protein as having a85 flexible binding site backed up by a shell of rigid
atoms has the further benefit of allowing us to use conformational search algorithms that are
much more aggressive than molecular dynamics, which is typically used in MMPBSA,
without disrupting the overall protein structure. A second key difference is that MMPBSA
calculations typically either neglect configurational entropy or else approximate it as an
average vibrational entropy over essentially randomly selected, energy-minimized molecular
dynamics snapshots. We are not aware of any systematic effort to characterize or validate
the MMPBSA approach. The mining minima approach, in contrast, is clearly tied to theory
and has been numerically tested for small systems where reliable entropies can be obtained
by brute-force methods86.

Potential avenues for improving the accuracy of method center on the representation of the
protein and the choice of energy and solvent models. One issue is that the present
calculations were simplified by omitting parts of the protein remote from the binding site.
This approximation could become problematic for ionized ligands, and especially when
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comparing ionized ligands with neutral ones, because then long-ranged electrostatic
interactions will become more important. It should be possible to addressed this omission
efficiently and straightforwardly by using precomputed grids of potentials to account for the
influence of remote parts of the protein on the mobile atoms of the ligand and protein in the
binding site85. The force-field used here is a Dreiding-based model, with Vcharge partial
charges, for the inhibitors, and CHARMM for the proteins. It is reasonable to ask whether
more advanced energy models, such as ones that account for electronic polarizability87–91,
could increase reliability. More sophisticated energy models, potentially including quantum
mechanical approaches92, are likely to be important when metal atoms are closely involved
in binding. It may be practical to include these as energy corrections as now done for the PB
corrections, rather than having to pay the high computational cost of including them during
the conformational search. Future calculations should also be able to take advantage of
ongoing efforts aimed at assigning reliable parameters to a variety of drug-like ligands93–95.
Perhaps more critical is the treatment of solvent. Here, we have effectively used a hybrid
implicit-explicit model, since we have used knowledge of representative crystal structures to
include key bridging waters explicitly. It would clearly be preferable to have an automatic
means of accounting for the consequences of water's granular nature in the protein-ligand
interface. One approach might be to routinely include one or a few explicit waters as
additional “ligands” in the calculations. The present software implementation already allows
this, and the added computational cost might remain manageable through parallelization, as
discussed above. It should be noted, though, that such a procedure raises the theoretical issue
of how to put the affinities of ligands computed with different numbers of explicit waters
onto the same free energy scale. For example, part of the shift between the computed
affinities of the present Group 1a and Group 1b HIVP inhibitors presumably results from the
fact that Group 1a includes one explicit water, while Group 1b does not. We are currently
working on this issue.

In summary, the mining minima approach has provided encouraging correlations between
calculation with experiment, and a number of avenues for further testing and improvement
of the method have been identified. The approach appears to hold significant promise as a
predictive method intermediate in complexity between fast, approximate docking and
scoring methods and more time-consuming, rigorous free energy integration methods. It
may thus be useful as a secondary computational filter for candidate ligands identified as
promising by simpler, high-throughput docking methods, and as a tool to support the
chemical optimization of lead compounds.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
High-level flow-chart of the mining minima procedure, showing nested iterative loops over
Cycles and Searches, each with its own convergence criterion, as detailed in the text.
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Figure 2.
Group 1a HIV-1 protease inhibitors.
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Figure 3.
Group 1b HIV-1 protease inhibitors.

Chen et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Scaffold of Group 2 HIV-1 protease inhibitors.
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Figure 5.
PDE 10a inhibitor 1 (left) and scaffold for inhibitors 11–29.
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Figure 6.
HIV-1 protease structures used for Group 1 inhibitors, with mobile ("live") set highlighted.
(The inclusion in the live set of two apparently isolated phenyl rings results from the
proximity of an inhibitor to one of the rings, combined with the symmetrization of the live
set across the two protease monomers.)
This and other 3D molecular graphics were generated with the program VMD.81

Chen et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
HIV-1 protease structure used for the Group 2 inhibitors, with mobile ("live") set
highlighted.
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Figure 8.
Phosphodiesterase 10a (PDE 10a) structure used for all the PDE 10a inhibitors, with mobile
("live") set highlighted.
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Figure 9.
Experimental vs. calculated binding free energies (kcal/mol) for Group 1a (red triangles) and
Group 1b (blue squares) HIV-1 protease inhibitors.
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Figure 10.
Lowest-energy conformers from each of the four most stable conformational clusters found
for the complex of amprenavir with HIV-1 protease. Color indicates computed stability in
the order red, pink, white, blue, from highest to lowest stability. Ligands and flap water
shown as tubes, protein as lines.
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Figure 11.
Lowest-energy conformers from each of the four most stable conformational clusters found
for the complex of XK263 with HIV-1 protease. See caption of prior figure for details.
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Figure 12.
Measured vs. computed binding free energies (kcal/mol) for Group 2 HIV-1 protease
inhibitors. Blue squares: initial calculations for all inhibitors. Red diamond: KB19 after
recalculating the free energy of its complex based on the most stable conformation of AD32.
(See text.)

Chen et al. Page 28

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Most stable computed bound conformations of all 10 Group 2 HIV-1 protease inhibitors,
along with the flap water. Cyan: carbon. White: hydrogen. Red: oxygen. Blue: nitrogen.
Green: fluorine. Yellow: sulfur.
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Figure 14.
Experimental vs calculated binding free energies (kcal/mol) for 20 PDE 10a inhibitors.
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Figure 15.
Most stable bound conformations computed for the complexes of the PDE 10a inhibitors,
showing ligand surrounded by mobile residues in cross-eyed stereo.

Chen et al. Page 31

J Chem Theory Comput. Author manuscript; available in PMC 2012 May 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 16.
Convergence of computed free energies of protein-ligand complexes for Group 1a and 1b
HIV protease inhibitors, as a function of the number of search cycles (see Methods).
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Figure 17.
Same as prior figure, for Group 2 HIV protease inhibitors. (The high energies of KB56
result from its cyclopropane ring, whose strain energy, evident here, cancels when the free
energy of unbound KB56 is subtracted according to Equation 1.
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Figure 18.
Same as prior two figures, for PDE 10a inhibitors. (The range of the vertical axis is matched
to the prior figures to facilitate comparison.)
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Figure 19.
Measured binding free energy versus computed changes in potential plus solvation energy
(omitting configurational entropy) for Groups 1a (red triangles) and 1b (blue squares) HIV-1
protease inhibitors (kcal/mol).
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Figure 20.
Measured binding free energy versus computed changes in potential plus solvation energy
(omitting configurational entropy) for Group 2 HIV-1 protease inhibitors (kcal/mol).
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Figure 21.
Measured binding free energy versus computed changes in potential plus solvation energy
(omitting configurational entropy) for PDE 10a inhibitors (kcal/mol).
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Figure 22.
Computed configurational entropy contributions, −TΔSo, vs. energy contributions, ΔE, for
the present protein-ligand calculations, along with prior host-guest results. Host-guest: blue
squares. Group 1a HIVP inhibitors: red diamonds. Group 1b HIVP inhibitors: point-down
yellow triangles. Group 2 HIVP inhibitors: point-up green triangles. PDE 10a: slanted, pale
blue triangles. Recalculated KB19 (Group 2) HIVP inhibitor: right-pointing brown triangle.
(kcal/mol)
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Table 1

Linear regressions and mean errors of computed binding free energies (ΔGo) versus measured binding free
energies, showing correlation coefficient (R), slope and Y-intercept (kcal/mol) of linear regression fits, and
mean deviation (kcal/mol) of calculation relative to experiment. In all cases, the experimental binding free
energy is considered to be on the ordinate (y-axis).

R Slope Y-intercept Mean Error

HIVP Group 1a 0.79 0.88 3.2 −5.5

HIVP Group 1b 0.84 0.65 7.5 −16.6

HIVP Group 2* 0.98 0.56 −1.1 −7.1

PDE 10a 0.84 0.38 −8.3 5.2

*
Group 2 regressions omit the outlier, KB-19.
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Table 4

Linear regressions and mean errors of computed mean binding energies (Boltzmann-averaged, Δ<E> and
global minimum, ΔEmin) versus measured binding free energies, showing correlation coefficient (R), slope
and Y-intercept (kcal/mol) of linear regression fits, and mean deviation (kcal/mol) of calculation relative to
experiment. In all cases, the experimental binding free energy is considered to be on the ordinate (y-axis).

R Slope Y-intercept Mean Error

Δ<E>

HIVP Group 1a 0.63 0.40 6.5 −37.0

HIVP Group 1b 0.86 0.44 15.4 −47.0

HIVP Group 2* 0.89 0.47 13.5 −42.9

PDE 10a 0.56 0.15 −5.2 −21.9

ΔEmin

HIVP Group 1a 0.67 0.42 7.3 −35.4

HIVP Group 1b 0.89 0.48 16.3 −44.8

HIVP Group 2* 0.88 0.50 14.3 −40.7

PDE 10a 0.61 0.19 −4.3 −21.1

*
Group 2 regressions omit the outlier, KB-19.
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Table 5

Linear regressions of experiment versus computed binding free energies with neglect of either the Mode
Scanning correction for anharmonicity (Harmonic) or the PB/SA solvation correction (GB).

R Slope Y-intercept

Harmonic

HIVP Group 1a 0.81 0.89 2.5

HIVP Group 1b 0.84 0.65 7.5

HIVP Group 2 0.97 0.56 −1.5

PDE 10a 0.83 0.37 −8.5

GB solvation

HIVP Group 1a 0.06 0.01 −12.5

HIVP Group 1b 0.41 −0.08 −18.8

HIVP Group 2 0.52 0.12 −5.7

PDE 10a 0.21 0.029 −10.1
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