# VM2 Version 2.8.2

# Free energy of binding for a protein-ligand series: tutorial 1

VeraChem LLC



Copyright (c) 2015-2019, VeraChem LLC, Germantown, MD, USA. All rights reserved.

VeraChem has been issued a patent (USPTO Patent No. 8,140,268) for the VM2 method.

Contact:

For information regarding VM2 software package licensing contact VeraChem LLC at <u>sales@verachem.com</u>

For technical support contact VeraChem LLC at <a href="mailto:support@verachem.com">support@verachem.com</a>

For general enquiries contact VeraChem LLC at info@verachem.com

# VM2 Free Energy of Binding for a Protein-Ligand Series: Tutorial 1

#### HIV-1 protease and 38 inhibitors: Amber/GAFF/VCharge

#### 1. Setup

- 1.1. Protein setup
  - 1.1.1. Remove all hetatoms and water atoms except atom 1580
  - 1.1.2. Extract the co-crystalized ligand
  - 1.1.3. Prepare the PDB file for tleap
  - 1.1.4. Run tleap to assign parameters
  - 1.1.5. Convert .prmtop and .inpcrd to .crd, .top, and .mol files
- 1.2. Ligand Setup
  - 1.2.1. Initial 2D structures
  - 1.2.2. 2D to 3D conversion
  - 1.2.3. Generate partial charges and assign parameters to the ligands
- 1.3. Define fixed and mobile protein atoms
  - 1.3.1. Generate co-crystalized ligand based AD-81 conformation
  - 1.3.2. Relax all hydrogen atoms in the system
  - 1.3.3. Distance based generation of real/live set
- 2. Run Calculations
  - 2.1. Generation of Ligand Starting Conformations
    - 2.1.1. Example run
    - 2.1.2. Options available for building conformer generation directories
    - 2.1.3. Options available for running conformer generation
  - 2.2. Protein-ligand calculations
    - 2.2.1. Example run
    - 2.2.2. Options available for building VM2 directories
    - 2.2.2. Options available for running VM2 calculations
- 3. Results Collection
  - 3.1. Generate binding free energy spreadsheets and collect conformer files
  - 3.2. Results generation options

### HIV-1 protease and 38 inhibitors: Amber/GAFF/VCharge

This is a full example of setup, execution of calculations, and collection of binding affinity results for a protein plus ligand series: the target protein is human HIV-1 protease and there are 38 ligands in the inhibitor series. (1)

**NOTE:** You will need a working installation of AmberTools with the \$AMBERHOME environment variable set to carry out the full procedure as described below. Please see <u>http://ambermd.org/</u> to download AmberTools and for its documentation.

To proceed, first, untar the examples file vcCompChem\_2\_8\_2\_examples.tar.bz2, which is provided with the package:

tar xvf vcCompChem\_2\_8\_2\_examples.tar.bz2

The main directory for this example is:

vcCompChem\_2\_8\_2\_examples /protein\_ligand/hiv1\_protease\_series\_1/

it contains a readme file: README.hiv1p , which describes the overall process, stepping through the following three directories in turn

hiv1\_protease\_series\_1/setup hiv1\_protease\_series\_1/run hiv1\_protease\_series\_1/results

An outline of each step now follows. You can skip the setup section by going straight to Section 2. and making use of the "-d reference" option, described in Sections 2.1.2. and 2.2.2.

#### 1. Setup

The procedure starts with setup, namely structure preparation, typing, charge assignment of the protein target molecule and ligand inhibitors, and assignment of mobile and fixed protein atoms.

#### 1.1. Protein setup

The basis for this setup is the crystal structure of HIV-1 protease and the co-crystalized inhibitor AD-81. The PDB access code for this structure is 2I0D. The multiple aspects to consider when preparing a protein for molecular mechanics calculations starting from PDB coordinates are described in Section V 3.1. of the main user's manual. Furthermore, the AMBER reference manual, available through the link given above, provides detailed advice for the use of AmberTools in this process - see the section titled "Preparing PDB Files".

The files used for the following steps are found in the following subdirectory:

hiv1\_protease\_series\_1/ setup/protein

#### 1.1.1. Remove all hetatoms and water atoms except atom 1580

For this particular receptor and set of inhibitors, it is important to explicitly include one of the water molecules (atom number 1580) present in the 2I0D crystal structure. Therefore, edit the pdb file 2i0d.pdb deleting everything prior to the first ATOM entry, all HETATOM entries except for that of atom 1580, and everything except the END record after HETATOM 1580. Name the resulting file 2i0d\_1580.pdb.

#### 1.1.2. Extract the co-crystalized ligand

The co-crystalized ligand in 2I0D is used as a reference structure, so copy and edit the original 2i0d.pdb file, deleting all atoms except the AD-81 ligand atoms, and rename the file ad\_81\_from\_2i0d.pdb.

#### 1.1.3. Prepare the PDB file for tleap

Prepare the pdb file for tleap by running the script run\_pdb4amber\_1.sh, i.e.

./run\_pdb4amber\_1.sh >& run\_pdb4amber\_1.log &

This will produce the file 2i0d\_1580\_p4a.pdb as well as other files required by tleap.

#### 1.1.4. Run tleap to assign parameters

Run tleap to assign parameters using the script run\_tleap\_2.sh.

./run\_tleap\_2.sh >& run\_tleap\_2.log &

This will produce .incpcrd, .prmtop, .mol2, and .pdb files. These will be named 2i0d\_1580\_p4a\_tleap.\*

#### 1.1.5. Convert .prmtop and .inpcrd to .crd, .top, and .mol files

Run the VeraChem amber pathway conversion tool prm2top.pyc using the script run\_prm2top\_3.sh, i.e.

./run\_prm2top\_3.sh >& run\_prm2top\_3.log &

This will produce the files 2i0d\_1580\_p4a\_tleap\_vm2.[crd,top,mol] These are the files that will be used to run the VM2 calculations.

Compare your results with those provided in the ./reference subdirectory to ensure that the procedure was successful.

#### 1.2. Ligand Setup

Some remaining protein setup steps require that the AD-81 ligand be already setup, so next, the full set of ligands are prepared and parameterized. The relevant subdirectories are:

hiv1\_protease\_series\_1/setup/ligands/source\_files hiv1\_protease\_series\_1/setup/ligands/vconf hiv1\_protease\_series\_1/setup/ligands/prepare\_ligands

#### 1.2.1. Initial 2D structures

Processing with AmberTools requires an input sdf file containing the ligands in 3D, with all hydrogens present and stereochemistry properly defined with parity values. For this example, the ligands were first drawn in 2D by a chemical draw program referencing figures from the published experimental binding affinity article.(*1*) A 2D mol file was saved for each ligand.

These 2D structures can be found in the ./source\_files subdirectory of ligands/. A simple python script (mol\_2\_sdf.py) is used to assemble them into a single sdf file called umass\_1.sdf.

python mol\_2\_sdf.py -o umass\_1.sdf

To process only a chosen subset of the prepared 2D structures a key file can be used that contains the names of the ligands, one on each line, to be processed e.g.

python mol\_2\_sdf.py -o umass\_1.sdf -k ligand\_key\_5.txt

## 1.2.2. 2D to 3D conversion

VeraChem's Vconf program is used to convert these 2D structures to 3D. The relevant files are found in the vconf/ subdirectory. First, copy over the umass\_1.sdf file generated by the last step, and then execute the run\_vconf.sh script to carry out the conversion:

./run\_vconf.sh &

The resulting 3D structures can be found in the file

 $hiv1\_protease\_series\_1/setup/ligands/vconf/umass\_1\_vconf.sdf$ 

You can compare your results against those provided in the reference/ subdirectory.

#### 1.2.3. Generate partial charges and assign parameters to the ligands

Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones parameters, while atom partial charges can be generated either by VeraChem's VCharge method or by AM1-BCC through AmberTools. The resulting prmtop and inpcrd files are then converted to the [crd,top,mol] file set used by VM2.

The prepareLigands.pyc script automates this process. First, go to the prepare\_ligands directory

hiv1\_protease\_series\_1/setup/ligands/prepare\_ligands

then copy over the 3D sdf file

cp ../source\_files/umass\_1.sdf .

Then, to execute the script choosing VCharge partial atomic charges type:

./run\_prepareLigands\_vcharge.sh &

and to assign charge using AM1-BCC type:

./run\_prepareLigands\_am1-bcc.sh &

While VCharge takes less than a minute for the set of 28 ligands, generation of AM1-BCC partial charges requires a QM calculation, which can take a considerable amount of time, e.g., approximately 3 hours on a Xeon E5-2667, 3.2GHz cpu.

You can compare your results against those in the reference subdirectories.

#### 1.3. Define fixed and mobile protein atoms

The choice of the included mobile and fixed protein atoms can have a significant impact on the final binding energy predictions produced by the VM2 method. VeraChem recommends inclusion of enough mobile atoms to capture relevant aspects such as loop movement on binding, while avoiding inclusion of large numbers of atoms as mobile, which are effectively spectators, so as to keep calculations manageable with respect to turnover times, and also minimize the occurrence of spurious minima that sometimes occur due to force field inadequacies.

A process for defining mobile and fixed atoms for subsequent free energy calculations is now described.

#### 1.3.1. Generate co-crystalized ligand based AD-81 conformation

First, go to the directory

setup/define\_fixed\_and\_mobile\_atoms/1\_gen\_coxtal\_ligand\_conf

Next, generate a conformation of the co-crystalized ligand AD-81 to use as the reference coordinates to carve out the mobile and fixed atoms in subsequent steps. This is achieved by 'snapping' scaffold atoms from the AD-81 structure generated in Step 2 above, to the corresponding positions of the co-Xtal AD-81 scaffold atoms in the 2I0D PDB file i.e. scaffold atoms in the file ad\_81\_from\_2i0d.pdb generated in Step 1.2.2

The required files are:

| ad_81_pdbsnap_confs.inp | : VM2 input file                                  |
|-------------------------|---------------------------------------------------|
| ad_81.crd               | : coordinate file generated in Section 1.2.3.     |
| ad_81.top               | : topology/parameter file fin Section 1.2.3.      |
| ad_81.mol               | : mol file generated in Section 1.2.3.            |
| ad_81_from_2i0d.pdb     | : reference ad_81 coordinates from Section 1.1.2. |

Generate the AD-81 conformations by typing:

```
./runvm2.bsh >& runvm2.log
```

The output of interest is the file:

 $ad_{81.confsearch_rank1.crd}$ 

which contains the coordinates of lowest energy AD-81 conformer 'snapped' to the cocrystalized ligand scaffold atoms. The coordinate file is used in the next step.

#### 1.3.2. Relax all hydrogen atoms in the system

To relieve close contacts that can occur on hydrogen atom placement, all hydrogen atom positions in the protein and AD-81 ligand are optimized according to the force field energy function.

Go to the directory

 $setup/define\_fixed\_and\_mobile\_atoms/2\_opt\_all\_protein\_h$ 

then copy the file required from last step and rename it:

cp ../1\_gen\_coxtal\_ligand\_conf/ad\_81.confsearch\_rank1.crd ad\_81\_snap2pdb.crd

The required files for this step are:

| 2i0d_1580_p4a_tleap_hopt.inp<br>ad_81_from_2i0d.pdb                                      | <ul> <li>: VM2 package input file for H atom optimization</li> <li>: reference ad_81 coordinates from Section 1.1.2.</li> </ul>           |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2i0d_1580_p4a_tleap_vm2.crd<br>2i0d_1580_p4a_tleap_vm2.top<br>2i0d_1580_p4a_tleap_vm2.mo | generated by Section 1.1. above.                                                                                                          |
| ad_81_snap2pdb.crd<br>ad_81.top<br>ad_81.mol                                             | ad_81_snap2pdb.crd is the just generated<br><  ad_81.confsearch_rank1.crd copied and<br>  renamed. The top and mol files are as in 1.3.1. |

Relax all hydrogen atom positions by typing:

./runvm2.bsh >& runvm2.log

The outputs of interest are the files

2i0d\_1580\_p4a\_tleap\_vm2.geomopt\_rank1.crd ad\_81\_snap2pdb.geomopt\_rank1.crd

which contain the lowest energy coordinates of the protein and ligand AD-81 after hydrogen atom optimization. These coordinates are used in the next step.

#### 1.3.3. Distance based generation of real/live set

Carve out a mobile and fixed set of protein atoms. VM2 uses so-called real and live sets, where the 'real' set are all the atoms included in the calculation (mobile and fixed) and the 'live' set is the subset of the 'real' set that is mobile. In this step, the VM2 package is used to carve out a 'real' set that comprises all residues that have an atom within 7 Angstoms any atom of the supplied AD-81 ligand coordinates, and a 'live' set of all protein atoms within 5 Angstoms of any atom of the supplied AD-81 ligand coordinates.

Go to the directory

setup/define\_fixed\_and\_mobile\_atoms/ 3\_dist\_based\_real\_live\_set

then copy and rename the required files from the last step:

cp ../2\_opt\_all\_protein\_h/2i0d\_1580\_p4a\_tleap\_vm2.geomopt\_rank1.crd 2i0d\_1580\_p4a\_tleap\_vm2\_opth.crd

cp ../2\_opt\_all\_protein\_h/ad\_81\_snap2pdb.geomopt\_rank1.crd ad\_81\_snap2pdb\_opth.crd

The required files for this step are:

| 2i0d_1580_p4a_tleap_genlivereal.inp < | VM2 package input file for generation of<br>'real' atom set of all atoms within 7<br>Angstroms of any atom in the supplied AD-<br>81 ligand crd, and a 'live' atom set within 5<br>Angstroms. |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2i0d_1580_p4a_tleap_vm2.top <  2      | he crd file is the just generated<br>i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd<br>enamed. The top and mol are unchanged.                                                                       |
| ad_81.top <  ad_81                    | _snap2pdb_opth.crd is the just generated<br>_snap2pdb.geomopt_rank1.crd from above<br>ed. The top and mol files are unchanged.                                                                |

Generate the real and live sets by typing:

./runvm2.bsh >& runvm2.log

The following output files allow you to visualize the 'live' set produced:

2i0d\_1580\_p4a\_tleap\_genlivereal.mol2 <--Load into visualizer to see live set produced. 2i0d\_1580\_p4a\_tleap\_genlivereal.pdb 2i0d\_1580\_p4a\_tleap\_genlivereal.sdf

To see the 'real' set of atoms defined in by these distance cutoffs, run the same calculation with the input file 2i0d\_1580\_p4a\_tleap\_genlivereal.inp changed to output 'real' atoms:

# atomsToOutput real #

Generated output files required for running VM2:

| 2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt | < | This file contains the atom  |
|------------------------------------------------|---|------------------------------|
|                                                |   | numbers of the live and real |
|                                                |   | atoms generated by the       |
|                                                |   | applied distance cutoffs.    |

Once you are happy with the defined real/live sets copy the protein data files required for VM2 runs directly into the directory define\_fixed\_and\_mobile\_atoms/ i.e.

cp 2i0d\_1580\_p4a\_tleap\_vm2.mol ../. cp 2i0d\_1580\_p4a\_tleap\_vm2\_opth.crd ../. cp 2i0d\_1580\_p4a\_tleap\_vm2.top ../. cp 2i0d\_1580\_p4a\_tleap\_vm2\_opth\_liverealatoms.txt ../2i0d\_5\_7\_live\_real.txt

**NOTE:** mandatory renaming of 2i0d\_1580\_p4a\_tleap\_vm2\_opth\_liverealatoms.txt to include the text "live\_real"

The setup stage is now complete.

#### 2. Run Calculations

The next step is to run the protein-ligand, protein, and ligand, free energy calculations. The relevant directories and readme file are:

hiv1\_protease\_series\_1/run/1\_ligand\_confgen hiv1\_protease\_series\_1/run/2\_vm2\_runs hiv1\_protease\_series\_1/run/README.runvm2

Optionally, ligand conformations can be pre-generated in /1\_ligand\_confgen and used to seed the VM2 calculations in /2\_vm2\_runs.

#### 2.1. Generation of Ligand Starting Conformations

Two types of pre-generated ligand conformations can be utilized in this example. One is 'snapped' conformations, where atoms in each ligand common to a, for example, cocrystalized ligand are, with an applied guiding force, superimposed, while conformational space of the remaining atoms is sampled. The other is randomly orientated conformations of the ligand, suitable for when no pose information is known, only the location of the binding site.

#### 2.1.1. Example run

Go to the directory

run/1\_ligand\_confgen

This directory contains a python script to generate run directories for conformer generation, and a python script to run the conformer generation calculations. Example usage is as follows:

python build\_ligand\_start\_conf\_dirs.py -t ad\_81\_from\_2i0d.pdb

will first populate the directories

1\_ligand\_confgen/gen\_ligand\_start\_confs\_snap

 $1\_ligand\_confgen/gen\_ligand\_start\_confs\_rndm$ 

with the required subdirectories, input files, and data files to run. Then the following command

python run\_ligand\_confs\_gen.py -r slurm

will step through all these subdirectories, generating slurm scripts, and submitting the calculations to the batch queue. See Section 2.1.3 below for additional submission options through the -r flag.

Note: Requirements for this example run are:

| ad_81_from_2i0d.pdb       | < | must be present in /setup/ligands/prepareLigands                                                                |
|---------------------------|---|-----------------------------------------------------------------------------------------------------------------|
| scaffold_mapping_wkey.txt | < | must be present in the current directory and contain<br>the mapping of each ligand onto the reference<br>ligand |

#### 2.1.2. Options available for building conformer generation directories

The python script build\_ligand\_start\_conf\_dirs.py can take a number of arguments for non-default control the source of the system data etc.:

| -d ordata re    | eference  | : Populate 'input_data' directory using the<br>data in the setup 'reference' directories<br>e.g. /setup/ligands/prepareLigands/reference,<br>and subsequently build the run directories<br>with this data.                    |  |  |
|-----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| new             |           | : Populate 'input_data' directory using the<br>new data in the setup directories<br>e.g. /setup/ligands/prepareLigands,<br>and subsequently build the run directories<br>with this data. (Default behavior.)                  |  |  |
| re              | use       | : Reuse the data from an already populated 'input_data' directory.                                                                                                                                                            |  |  |
| -s orstartconfs | s random  | : Make a run directory for each ligand<br>in the series for generation of ligand<br>conformers in random orientations and<br>with their center of geometry (COG) placed<br>at a template ligand's COG.                        |  |  |
|                 | snap      | : Make a run directory for each ligand<br>in the series for generation of ligand<br>conformers where scaffold atoms are<br>'snapped' to corresponding template ligand<br>scaffold atoms (via applied harmonic<br>potentials). |  |  |
|                 | all       | : Make both of the above run directories.<br>(Default behavior.)                                                                                                                                                              |  |  |
| -t ortemplate   | 'template | _filename' : Name of file containing template ligand<br>coordinates e.g. co-xtal ligand or<br>previously docked ligand. Required unless<br>'-d reuse' option set.                                                             |  |  |
| -c orclear      | input     | : Delete the contents of 'input_data' directory.                                                                                                                                                                              |  |  |
|                 | rundirs   | : Delete the contents of the run directories<br>'gen_ligand_start_confs_rndm' and<br>'gen_ligand_start_confs_snap'.                                                                                                           |  |  |
|                 | all       | : Delete content from the 'input_data' directory and the run directories.                                                                                                                                                     |  |  |

Example usage:

python build\_ligand\_start\_conf\_dirs.py -c rundirs -d reuse

This will clear the contents of previously generated run directories and use the data already present in ./input\_data to regenerate the run directories i.e. data will not be taken from the setup directories in this case.

#### 2.1.3. Options available for running conformer generation

The python script run\_ligand\_confs\_gen.py can take a number of arguments:

| -s orstartconfs | random       | : Step through each ligand directory in<br>/gen_ligand_start_confs_rndm and<br>submit a calculation for generation of ligand<br>conformers in random orientations and<br>with their center of geometry (COG) placed<br>at a template ligand's COG.                       |
|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | snap         | : Step through each ligand directory in<br>gen_ligand_start_confs_snap and<br>submit a calculation for generation of ligand<br>conformers where scaffold atoms are<br>'snapped' to corresponding template ligand<br>scaffold atoms (via applied harmonic<br>potentials). |
|                 | all          | : Carry out both sets of calculations.<br>(Default behavior.)                                                                                                                                                                                                            |
| -r orrunscript  | bsh          | : Generate and use bash shell scripts for submission of each calculation. (Default behavior.)                                                                                                                                                                            |
|                 | csh          | : Generate and use c-shell scripts for submission of each calculation.                                                                                                                                                                                                   |
|                 | pbs          | : Generate a pbs script for submission of each calculation to a queue.                                                                                                                                                                                                   |
|                 | slurm        | : Generate a slurm script for submission of each calculation to a queue.                                                                                                                                                                                                 |
| -q orpartition  | 'queue name' | : For pbs and slurm run scripts, the name of the queue or partition if the default queue is not being used.                                                                                                                                                              |
| -p orprepmode   |              | : If present the run scripts are generated and placed                                                                                                                                                                                                                    |

in every directory, but the calculations are not submitted.

#### 2.2. Protein-ligand calculations

Two main types of VM2 protein-ligand free energy calculation are available. One is regular VM2, which carries out iterative rounds of conformational searching until convergence; the other type carries out geometry optimizations of protein-ligand conformations constructed from ligand conformers read-in and processes them for free energy. The latter is much faster, but much less exhaustive in terms of sampling conformational space. In combination, there are three ways to seed these two VM2 calculation types with ligand conformers: multiple conformers with selected atoms 'snapped' to a reference ligand – see Section 2.1. above; multiple conformers randomly orientated in space, but placed at the location of the binding site – see Section 2.1. above, and a single conformer, based on the position and geometry in which it was prepared originally. This provides for six different overall VM2 calculation schemes, which cover various types of use scenarios.

#### 2.2.1. Example run

Go to the directory

 $run/2_vm2_runs$ 

This directory contains a python script to generate run directories for protein-ligand VM2 free energy calculations, and a python script to step through the directories and run the calculations. Example usage is as follows:

python build\_vm2\_run\_dirs.py -t ad\_81\_from\_2i0d.pdb

will first populate the following six directories, which cover the calculation types described above, with the required subdirectories, input files, and data files to run.

/2\_vm2\_runs/fast\_vm2\_snap /2\_vm2\_runs/fast\_vm2\_rndm /2\_vm2\_runs/fast\_vm2\_single /2\_vm2\_runs/vm2\_snap /2\_vm2\_runs/vm2\_rndm /2\_vm2\_runs/vm2\_single

**Note:** For "\_snap" and "\_rndm" types, the corresponding pre-generation of ligand conformers – Section 2.1. - must already have occurred.

Then the following command:

python run\_vm2\_calculations.py -s snap -v fast -r slurm

will step through the subdirectories of /2\_vm2\_runs/fast\_vm2\_snap, generating slurm scripts, and submitting the calculations to the batch queue. Similarly, any of the other five calculations types may be run by setting the appropriate flags – see Section 2.2.2 below. See Section 2.2.3 below for additional submission options through the -r flag.

#### 2.2.2. Options available for building VM2 directories

The python script build\_vm2\_run\_dirs.py can take a number of arguments for non-default control of the source of the system data etc.:

| -d ordata reference    | : Populate 'input_data' directory using the<br>data in the setup 'reference' directories<br>e.g. /setup/ligands/prepareLigands/reference and<br>/setup/define_fixed_and_mobile_atoms/reference,<br>and the ligand start conformer generation<br>reference directory /run/1_ligand_confgen/reference<br>and subsequently build the run directories<br>with this data.                                                         |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| new                    | : Populate 'input_data' directory using the new data in the<br>setup directories e.g. /setup/ligands/prepareLigands and<br>/setup/define_fixed_and_mobile_atoms/<br>and the ligand start conformer generation directories<br>/run/1_ligand_confgen/gen_ligand_start_confs_rndm<br>and /run/1_ligand_confgen/gen_ligand_start_confs_snap<br>and subsequently build the run directories<br>with this data. (Default behavior.) |
| reuse                  | : Reuse the data from an already populated 'input_data' directory.                                                                                                                                                                                                                                                                                                                                                           |
| -s orstartconfs random | : Requests run directory set up for VM2 free energy<br>calculations where randomly oriented ligand conformers<br>are placed in the active site and are used to generate<br>starting protein-ligand conformations.                                                                                                                                                                                                            |
| snap                   | : Requests run directory set up for VM2 free energy<br>calculations where ligand conformers in which scaffold<br>atoms have been 'snapped' to corresponding scaffold<br>atoms of a template ligand (e.g. co-xtal ligand) are<br>used to generate starting protein-ligand conformations.                                                                                                                                      |
| single                 | : Requests run directory set up for VM2 free energy<br>calculations where a single ligand starting conformation<br>and placement is used based on the supplied ligand .crd<br>file coordinates. The placement can be adjusted if a<br>template ligand is supplied and the place ligand flag set;<br>see -t,template and -p,placelig below. Only used a                                                                       |

|               |           | non-adjusted ligand .crd if you prepared the ligand in a very good placement and pose in the receptor binding site.                                                                                                                                                                                                    |  |
|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| all           |           | Requests both types of directory to be set up.<br>(Default behavior.)                                                                                                                                                                                                                                                  |  |
| -t ortemplate | 'templat  | e_filename' : Name of file containing template ligand<br>coordinates e.g. co-xtal ligand or<br>previously docked ligand. Could simply be<br>coordinates that signifiy the loacation of<br>the binding site. Not required unless<br>random start conformers are in use or the<br>place ligand option just below is set. |  |
| -p orplacelig | tcog      | : Place ligand .crd coordinates center of geometry at template ligand's center of geometry.                                                                                                                                                                                                                            |  |
| -c orclear    | input     | : Delete the contents of 'input_data' directory.                                                                                                                                                                                                                                                                       |  |
| r             | undirs    | : Delete the contents of the run directories.                                                                                                                                                                                                                                                                          |  |
|               | all       | : Delete content from the 'input_data' directory and the run directories.                                                                                                                                                                                                                                              |  |
| -v orvm2type  | regular   | : Requests run directory set up for regular VM2<br>protein-ligand free energy calculations, which<br>carry out extensive conformational searching.                                                                                                                                                                     |  |
|               | fast      | : Requests run directory set up for fast VM2<br>protein-ligand free energy calculations, which<br>calculate free energies via geometry optimizing<br>protein-ligand conformations generated from<br>read-in ligand conformers previously snapped to<br>a template scaffold.                                            |  |
|               | all       | : Requests set up for both types of VM2 calculation.                                                                                                                                                                                                                                                                   |  |
| -k orkeyfile  | 'ligand_l | key_filename' : Name of text file containing the subset of<br>ligands in the series - one on each line (see<br>ligand_key_5.txt.)                                                                                                                                                                                      |  |

# 2.2.3. Options available for running VM2 calculations

The python script run\_ligand\_confs\_gen.py can take a number of arguments:

| -s orstartconfs | random : Requests that VM2 free energy calculations are run |
|-----------------|-------------------------------------------------------------|
|                 | for the series where randomly oriented ligand conformers    |

|                |          | are placed in the active site and are used to generate starting protein-ligand conformations.                                                                                                                                                                                                                     |
|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | snap     | : Requests that VM2 free energy calculations are run<br>for the series where ligand conformers in which scaffold<br>atoms have been 'snapped' to corresponding scaffold<br>atoms of a template ligand (e.g. co-xtal ligand) are<br>used to generate starting protein-ligand conformations.<br>(Default behavior.) |
|                | all      | : Requests both types of run be carried out.                                                                                                                                                                                                                                                                      |
| -r orrunscript | bsh      | : Generate and use bash shell scripts for submission of each calculation. (Default behavior.)                                                                                                                                                                                                                     |
| csh            |          | : Generate and use c-shell scripts for submission of each calculation.                                                                                                                                                                                                                                            |
| pbs            |          | : Generate a pbs script for submission of each calculation to a queue.                                                                                                                                                                                                                                            |
| slur           | m        | : Generate a slurm script for submission of each calculation to a queue.                                                                                                                                                                                                                                          |
| -q orpartition | 'queue n | ame' : For pbs and slurm run scripts, the name of the queue or partition if the default queue is not being used.                                                                                                                                                                                                  |
| -p orprepmode  |          | : If present the run scripts are generated and placed<br>in every directory, but the calculations are not<br>submitted.                                                                                                                                                                                           |
| -v orvm2type   | regular  | : Requests regular VM2 protein-ligand free energy calculations for the series, which carry out extensive conformational searching.                                                                                                                                                                                |
|                | fast     | : Requests fast VM2 VM2 protein-ligand free energy<br>calculations for the series, which calculate<br>free energies via geometry optimizing<br>protein-ligand conformations generated from<br>read-in ligand conformers snapped to a template<br>scaffold. (Default behavior.)                                    |
|                | all      | : Requests both types of VM2 calculation are run for the series.                                                                                                                                                                                                                                                  |

| -i ormpiprocs n (in | nteger) | all processes m                                            | er of MPI processes to run. Currently<br>nust run on the same node - though<br>f run scripts can remove this restriction.<br>8. |
|---------------------|---------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| -g orgpu            |         | : If present requerted executable.                         | uests use of CUDA enabled VM2                                                                                                   |
| -o orompthreads     | 1       | -                                                          | sults in MPI parallelism only.<br>igand only runs.                                                                              |
|                     | 2       | (default), 2 Op                                            | lt in MPI+OpenMP run (8 MPI processes<br>benMP threads per process). If -g also set<br>MPI+OpenMP+CUDA parallelism.             |
|                     | 4       | : Same as previ                                            | ous, but 4 OpenMP threads.                                                                                                      |
| -m ormolsystems     | comp    | lexes+ligands<br>lexes+protein<br>otein+ligand<br>omplexes | <br> <br> <br> > Run subset of the moleculer system                                                                             |
|                     |         | ligands<br>protein                                         | types.<br> <br>                                                                                                                 |
|                     |         | all                                                        | : Default. Run ligands, complexes, and protein.                                                                                 |

Example usage:

nohup python run\_vm2\_calculations.py -g -o 2

Run default fast-snap set of calculations (fast\_vm2\_snap directory) with 8 MPI process calculations for ligand calculations, but MPI+OpenMP+CUDA calculations for the complexes and the protein.

This run utilizes 8 MPI processes with 1 GPU per MPI process and 2 OpenMP threads per MPI process. It therefore requires 16 compute cores and 8 GPUs.

#### 3. Results Collection

When the protein-ligand, protein, and ligand VM2 free energy calculations for the complete ligand series have completed, the binding free energies may then be calculated, and the formatted files, e.g., .mol2, .pdb, .sdf, containing the associated molecular structures collected.

The relevant directories and readme file are:

hiv1\_protease\_series\_1/results hiv1\_protease\_series\_1/results/conformers hiv1\_protease\_series\_1/results/README.results

#### 3.1. Generate binding free energy spreadsheets and collect conformer files

Go to the directory

hiv1\_protease\_series\_1/results

To generate spreadsheets and collect molecule conformer files for the "fast\_vm2\_snap" calculations from Section 2.2.1 type:

python create\_vm2\_summaries.py -c fast\_vm2\_snap -n 2i0d -l ad\_81

Requirements:

File containing experimental data: experimental\_data.csv

The filename must contain "experimental\_data". The format is <proteinname\_ligandname>, <value> e.g.

2i0d\_ad\_12,-9.367 2i0d\_ad\_17,-14.203 2i0d\_ad\_23,-11.559 2i0d\_ad\_24,-10.126 2i0d\_ad\_32,-10.337 2i0d\_ad\_33,-12.458

Output spreadsheets:

results/2i0d\_fast\_vm2\_snap\_complex.csv results/2i0d\_fast\_vm2\_snap\_protein.csv results/fast\_vm2\_snap\_ligand.csv results/2i0d\_fast\_vm2\_snap\_SUMMARY.csv

The last of these contains the binding free energies.

Output conformer files:

For the protein, each ligand, and each protein-ligand complex, formatted files (e.g. mol2, pdb, sdf, xyz) containing the lowest energy conformer, and the eight lowest energy conformers are written to:

results/conformers/fast\_vm2\_rndm/complexes results/conformers/fast\_vm2\_rndm/ligands results/conformers/fast\_vm2\_rndm/protein

#### 3.2. Results generation options

For the script create\_vm2\_summaries.py the following two commandline arguments are mandatory with the following options:

| -c orcalctype                                     | _       | n2_snap<br>n2_rndm                                                                      | : Identify the calculation type<br>to collect and summarize run<br>data for.         |  |  |
|---------------------------------------------------|---------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
|                                                   | fast_vn | n2_single                                                                               |                                                                                      |  |  |
|                                                   | vm2_s   | vm2_snap                                                                                |                                                                                      |  |  |
|                                                   | vm2_r   | vm2_rndm                                                                                |                                                                                      |  |  |
|                                                   | vm2_s   | vm2_single                                                                              |                                                                                      |  |  |
| -n orreceptorname                                 |         | : Provide the name of the receptor<br>e.g. for this case the protein<br>is named "2i0d" |                                                                                      |  |  |
| There are two additional non mandatory arguments: |         |                                                                                         |                                                                                      |  |  |
| -d ordata                                         | new     | data to be                                                                              | ource of the calculation<br>extracted and summarized<br>_vm2_runs/fast_vm2_snap etc. |  |  |

| reference | : Sets the source of the calculation           |  |
|-----------|------------------------------------------------|--|
|           | data to be extracted and summarized            |  |
|           | as/run/2_vm2_runs/reference/fast_vm2_snap etc. |  |

(Default behavior.)

-l or --refligand : Provide the name of the reference ligand to be used in relative binding affinity calculation i.e. for Delta(DeltaG) The default is no reference. 1. A. Ali *et al.*, Discovery of HIV-1 protease inhibitors with picomolar affinities incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. *J. Med. Chem.* **49**, 7342-7356 (2006).