
VM2
Version 2.8.2

User’s Manual

VeraChem LLC

 2

Copyright (c) 2015-2019, VeraChem LLC, Germantown, MD, USA. All rights reserved.

VeraChem has been issued a patent (USPTO Patent No. 8,140,268) for the VM2
method.

Contact:

For information regarding VM2 software package licensing contact VeraChem LLC at
sales@verachem.com

For technical support contact VeraChem LLC at support@verachem.com

For general enquiries contact VeraChem LLC at info@verachem.com

mailto:sales@verachem.com
mailto:support@verachem.com
mailto:info@verachem.com

 3

Contents

I. Introduction

1. VM2 background and theory

1.1 Purpose of VM2
1.2. Binding free energy
1.3. Enthalpy-entropy compensation
1.4. Computational free energy methods
1.5. Mining minima approximation
1.6. Molecular coordinate systems
1.7. Conformational searching
1.8. Configuration integrals
1.9. Filtering of conformer repeats
1.10. VM2 algorithm
1.11. Molecular system partitioning

2. VM2 package modules

2.1. VM2 : VeraChem second-generation mining minima
2.2. Vconf : Conformational search
2.3. VfreeE : Configuration integration
2.4. Vstereochem : Stereochemistry
2.5. Vfilter : Filtering of repeat conformers
2.6. Vrmsd : Multiple conformer RMSD
2.7. Vhessian : Potential energy 2nd-derivative calculation
2.8. Vgeomopt : Geometry optimization
2.9. Vpotential : Potential energy and 1st-derivative

II. Energy Potentials

1. Molecular mechanics potentials

1.1. Force field support
1.1.1. Basic potential energy form
1.1.2. Bond and angle energy terms
1.1.3. Torsion energy terms
1.1.4. Coulomb nonbonded energy
1.1.5. Van der Waals energy term
1.1.6. CHARMM parameter sets
1.1.7. OPLS parameter sets
1.1.8. Amber parameter sets
1.1.9. Dreiding parameter set

1.2. The VeraChem topology and force field parameter file (.top)
 1.2.1. Identification of force field
 1.2.2. Atom types, charges, and van der Waals parameters

 4

 1.2.3. Bonds and force constants
 1.2.4. Angles and angle force constants
 1.2.5. Proper dihedrals and corresponding parameters
 1.2.6. Improper dihedrals and corresponding parameters
 1.2.7. Nonbonded ‘fixes’
 1.2.8. Final count of atoms, bonds, angles, proper and improper dihedrals
 1.2.9. !NDON
1.3. Solvation models

1.3.1. Generalized Born (GB)
1.3.2. Constant dielectric (CD)
1.3.3. Distance dependent (DD)

 1.3.4. Poisson Boltzmann Surface Area (PBSA)

2. Quantum mechanics (not supported in this version)

III. Installation

1. Obtaining package, and package choices

1.1. Commercial licensing
1.2. Trial license
1.3. Academic licensing
1.4. Package choices

2. Operating systems and hardware

2.1. Linux workstations
2.2. Linux desktop
2.3. Linux clusters
2.4. Linux workstations and clusters with NVIDIA GPU accelerators
2.5. OSX
2.6. MS Windows

3. Installation procedure
3.1. Download the VM2 package
3.2. License file
3.3. Environment variables for installation
3.4. Requirements for installation
3.5 Installation script

4. Installed VM2 package structure

4.1. Helper tools
 4.1.1. Vcharge : assignment of partial atomic charges
 4.1.2. Vconf : 2D to 3D and small molecule conformational search
 4.1.3. prm2top : AMBER formatted input data files to VM2 input data files
 4.1.4. psf2top : CHARMM formatted input data files to VM2 input data files
 4.1.5. mmo2top : Schrodinger mmo file to VM2 input data files
4.2. VM2 executables
4.3. Supplied libraries

 5

5. Environment variables for running validation calculations

6. Installation validation tests

6.1. Helper tools validation tests
 6.1.1. Maestro/Macromodel pathway
 6.1.2. AmberTools pathway
 6.1.3. Biovia Discovery Studio Visualizer (DSV) pathway
 6.1.4. VCharge validation test
 6.1.5. VConf validation test

6.2. VM2 validation tests

IV. Parallel Processing

1. VM2 serial calculation bottlenecks
2. Parallelization strategy
3. MPI coarse-grained parallelization

3.1. Coupled MPI conformational search
3.2. Uncoupled MPI conformational search: introduction of diversity
3.3. Non-blocking MPI communication

4. Fine-grained parallelization
4.1. OpenMP
 4.1.1. OpenMP fine-grained parallelization of GB energy-gradient
 4.1.2. OpenMP parallelization of Hessian transformation and diagonalization
 4.1.3 OpenMP parallelization of PBSA
4.2. CUDA
 4.2.1. CUDA based fine-grained parallelization of the GB energy-gradient
 4.2.2. CUDA parallelization of Hessian transformation and diagonalization

5. Combined coarse grained-fine grained parallelization
5.1. MPI-OpenMP parallelization
5.2. MPI-CUDA and MPI-OpenMP-CUDA parallelization

V. Molecular system and input data file preparation

1. Molecular systems

1.1. Ligands
1.2. Proteins
1.3. Protein+ligand complexes
1.4. Host+ligand complexes

2. Molecular system data sources
2.1. The Protein Data Bank (PDB)
2.2. The Cambridge Crystallographic Data Center (CCDC)
2.3. The Binding Data Base (BindingDB)
2.4. Chemical components in the PDB (PDBeChem)
2.5. ZINC: a free database of commercially available compounds

 6

3. Molecular system preparation and computational model choices
3.1. Proteins
 3.1.1. Missing side chains
 3.1.2. Non-standard amino acids
 3.1.3. Chain breaks
 3.1.4. Hydrogen addition
 3.1.5. Stereochemistry
 3.1.6. Metal centers
 3.1.7. Solvent and ions
 3.1.8. Specific residue protonation states
 3.1.9. Residue mutations
 3.1.10 Choice of protein real/live set
 3.1.11. Protein atom typing and parameters
3.2. Host molecules and ligands
 3.2.1. Hydrogen addition
 3.2.2. Protonation states
 3.2.3. Bond order recognition
 3.2.4. Stereochemistry
 3.2.5. Generalized atom typing and parameters

4. Mandatory formatted molecular data file generation

5. System and data file preparation routes

5.1. Route 1: Conversion of Amber style input files
 5.1.1. AmberTools
 5.1.2. UCSF Chimera
 5.1.3. OpenMM
5.2. Route 2: Conversion of CHARMM style input files
 5.2.1. Discovery Studio Visualizer
 5.2.2. CHARMMing
 5.2.3. CHARMM-GUI
5.3. Route 3: Maestro/Macromodel (OPLS2005)

5.3.1. System preparation and generation of MMO files
5.3.2. Conversion of MMO files to .crd, .top, and .mol/.sdf

5.4. Route 4: VeraChem preparation tools

VI. Running VM2 calculations

1. Mandatory input file (.inp)

2. Mandatory data files

2.1. Card (.crd) file
2.2. Topology/parameter (.top) file
2.3. Molecular data (.mol/.sdf) file

3. Optional data files

 7

3.1 Formatted file defining atoms/points in space used for automatic generation of
 protein real/live sets

3.2. Formatted text file that explicitly defines fixed and mobile atoms
3.3. Formatted file containing atoms to be constrained
3.4. Formatted file containing atoms to be excluded from conformational searches
3.5. Standard format files containing coordinates of previously generated molecular

 conformers
 3.5.1 Ability to read in multiple conformers to initiate runs

4. Environment variables

4.1. Placeholder
4.2. Placeholder
4.3. Placeholder
4.4. Placeholder

5. Run scripts
5.1. Bash shell scripts
 5.1.1. Example 8 MPI process run

5.1.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process

5.2. C-shell scripts
 5.2.1. Example 8 MPI process run using C-shell

5.2.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using C-shell

5.3. PBS batch queue scripts
 5.3.1. Example 8 MPI process PBS run

5.3.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using PBS

5.4. SLURM batch queue scripts
 5.4.1. Example 8 MPI process SLURM run

5.4.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using SLURM

5.5. LSF batch queue scripts
 5.5.1. Example 8 MPI process LSF run

5.5.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using LSF

6. CloudVM2 – running VM2 on Amazon Web Services (AWS) cloud environment

6.1. Outline of CloudVM2 operation
6.2. Architecture and economics
6.3. CloudVM2 GUI
 6.3.1. Main menu
 6.3.2. Start menu
 6.3.3. Check menu
 6.3.4. Retrieve menu

 8

7. Front end workflow

7.1. General scheme for ligand series and receptor binding
7.2. Local clusters
7.3. CloudVM2

VII. Output files

1. Standard output files

1.1. Verbose output file (.out) contains detailed description of all steps of the
calculation
1.2. Summary output file (.summary.out) contains a basic summary of the run,
including energy tables at the end
1.3. Binary restart file (.vcbin)

2. Optional output files

2.1. Structural data
2.2. Energy data

3. Back end workflow

3.1. Generation of binding affinity tables
3.2. Placeholder

VIII. Input file run options reference

1. Choice of system type and calculation type and other top-level control

1.1. molSystemType : set molecular system type
1.2. calcnType : set calculation type
1.3. timeLimit : set calculation wall clock time limit
1.4. readInConfs : read in previously generated molecular conformers
1.5. ligandConfsToCrd : control the placement of read-in molecular conformers
1.6. useCrdAsTemplate : controls template used when constructing complexes
1.7. useCrdAsConf : when constructing conformers also use .crd as a conformer
1.8. outputFormats : control formatted molecular data files to output
1.9. fullEnergyBreakdown : controls level of detail in energy breakdown output
1.10. splitOutputFormats : controls output of separate receptor/ligand data files
1.11. limitConfsToOutput : limit the number of conformers output
1.12. atomsToOutput : controls whether all atoms, real, or just live atoms output
1.13. binaryFileRestart : option to restart a calculation from binary check point file
1.14. Example usage 1

2. Molecular system definition options for protein macromolecules
 2.1. inputProtein

2.2. setChainIds
2.3. constructLiveReal

 9

2.4. realCutoffDist
2.5. liveCutoffDist
2.6. symmetrizeRealSet
2.7. symmetrizeLiveSet
2.8. Example usage 2
2.9. Example usage 3

3. Molecular system definition options for host molecules
3.1. inputHost
3.2. Example usage 4

4. Molecular system definition options for ligand molecules

4.1. inputLigand
4.2. placeLigandMethod
4.3. doSnapTemplatePairs
4.4. snapTemplatePairsFC
4.5. Example usage 5

5. Math related options e.g. control of random seed generation

5.1. randomSeedsMethod
5.2. setRandomSeeds
5.3. Example usage 6

6. VeraChem mining minima (VM2) calculation options

6.1. convTolVm2
6.2. maxVm2Iters
6.3. Example usage 7

7. General conformational search control options

7.1. convTolConfsearch
7.2. maxConfsearchIters
7.3. confSearchStyle
7.4. maxSearches
7.5. modeRotnMax
7.6. switchToRandomRotnMax
7.7. numRlsearch
7.8. ligandTranMax
7.9. ligandRotnMax
7.10. excludeBackBone
7.11. excludeSideChains
7.12. excludedAtomsFile
7.13. forceConstCutoff
7.14. deltaLevel1Cutoff
7.15. nonBlockingUpdate
7.16. doLoadBalance
7.17. mixSearchBasis
7.18. mixSearchIters
7.19. mixSearchPicks
7.20. doClusterBy

 10

7.21. poolSize
7.22. relaxNonDriverAtoms
7.23. Example usage 8

8. Custom conformational search options

8.1. Search
8.2. modeSearch
8.3. mode
8.4. focusedSearch
8.5. ndrivers
8.6. drivers
8.7. binRandomPairs
8.8. modeDistMaxE
8.9. ligandSearch
8.10. sligandSearch
8.11. rligandSearch
8.12. ligandDistMaxE
8.13. Example usage 9

9. Options and control of spatial boundary based conformer rejection

9.1. boxedAtoms
9.2. atomBoxSize
9.3. ligandBoxSize
9.4. Example usage 10

10. Options for free energy processing of conformers

10.1. modeScanning
10.2. temperature
10.3. freeEnergyPreFactor
10.4. Example usage 11

11. Stereochemistry checking and enforcement control

11.1. maintainCisTrans
11.2. maintainParity
11.3. maintainProteinPepBonds
11.4. Example usage 12

12. Control of filtering out conformer repeats

12.1. preFilterCalcType
12.2. pairCutoff1
12.3. pairCutoff2
12.4. pairRmsdCutoff1
12.5. pairRmsdCutoff2
12.6. firstConfCullE
12.7. ConfCullE
12.8. displaceCurrentConfs
12.9. Example usage 13

13. Options for molecular alignment and RMSD calculation

 11

13.1. preRmsdCalcnType
13.2. preRmsdFilter
13.3. rmsdAllPairsMethod
13.4. confAlignment
13.5. numAlignAtoms
13.6. atomsToAlign
13.7. Example usage 14

14. Geometry optimization options and control, including constraints

14.1. maxAtomGrad
14.2. maxAtomGradLoose
14.3. doPreoptSteps
14.4. preoptMethod
14.5. maxPreoptSteps
14.6. geomoptMethod
14.7. maxGeomoptSteps
14.8. batchEnergyCutoff
14.9. tetheredAtoms
14.10. tetherForceConstant
14.11. tetherScalingFactor
14.12. tetherDistance
14.13. tetherOrder
14.14. nfreezeAtoms
14.15. freezeAtoms
14.16. Example usage 15

15. Molecular mechanics potential energy calculation: methods and usage control

15.1. level1mmMethod
15.2. level2mmMethod
15.3. allowZeroWaterLJ
15.4. allowZeroLJ
15.5. mmAddFxdFxdConst
15.6. Example usage 16

16. Molecular mechanics Generalized Born (GB) solvation model

16.1. gbSolvationModel
16.2. still97ParamSet
16.3. gbDielectricExt
16.4. gbDielectricInt
16.5. gbCavityRadii

17. Molecular mechanics constant dielectric (CD) solvation model
17.1. cdSolventDielectric

18. Molecular mechanics distance dependent (DD) dielectric solvation model
17.1. ddCoefficient

19. Molecular mechanics Poisson Boltzmann Surface Area (PBSA) solvation model

19.1. pbDielectricExt

 12

19.2. pbDielectricInt
19.3. pbsaCavityRadii
19.4. sasaProbeRadius

IX. Ligand example

1. CHARMM pathway using Discovery Studio Visualizer (DSV)

1.1. Get mol2 data file for chosen molecule: ibuprofen
1.2. Load molecule into DSV

2. CHARMM pathway using the web user interface CHARMMing

2.1. Get mol2 data file for chosen molecule: ibuprofen

X. Protein-ligand example: HIV-1 protease and 38 inhibitors

1. Setup

1.1. Protein setup
1.1.1. Remove all hetatoms and water atoms except atom 1580
1.1.2. Extract the co-crystalized ligand

 1.1.3. Prepare the PDB file for tleap
 1.1.4. Run tleap to assign parameters
 1.1.5. Convert .prmtop and .inpcrd to .crd, .top, and .mol files

1.2. Ligand Setup
1.2.1. Initial 2D structures
1.2.2. 2D to 3D conversion
1.2.3. Generate partial charges and assign parameters to the ligands

1.3. Define fixed and mobile protein atoms
1.3.1. Generate co-crystalized ligand based AD-81 conformation
1.3.2. Relax all hydrogen atoms in the system
1.3.3. Distance based generation of real/live set

2. Run Calculations
2.1. Generation of Ligand Starting Conformations

2.1.1. Example run
2.1.2. Options available for building conformer generation directories
2.1.3. Options available for running conformer generation

2.2. Protein-ligand calculations
2.2.1. Example run
2.2.2. Options available for building VM2 directories
2.2.2. Options available for running VM2 calculations

3. Results Collection

3.1. Generate binding free energy spreadsheets and collect conformer files
3.2. Results generation options

 13

XI. Host-guest example: Sampl6 Octa-acids and guests

1.Setup

1.1. Host Setup
1.1.1. Source files

 1.1.2. Generate partial charges and assign parameters
1.2. Ligand Setup

1.2.1. Source files
1.2.2. Generate partial charges and assign parameters

2. Run Calculations

2.1. Generation of Ligand Starting Conformations
2.1.1. Example run
2.1.2. Options available for building conformer generation directories
2.1.3. Options available for running conformer generation

2.2. Host-guest calculations
2.2.1. Example run
2.2.2. Options available for building VM2 directories
2.2.3. Options available for running VM2 calculations

3. Results Collection

3.1. Generate binding free energy spreadsheets and collect conformer files
3.2. Results generation options

XII. VeraChem file formats

1. VeraChem’s topology and force field parameter (.top) file format example
2. Definition of protein real/live atom sets (real_live_set.txt)
3. Identify constrained (tethered) atom sets (tethered_atoms.txt)
4. Identify atoms to be excluded in conformation search drivers (excluded_atoms.txt)

XIII. References

XIV. Index

 14

I. Introduction

1. VM2 background and theory

1.1 Purpose of VM2

The main purpose of VM2 is to compute the binding affinities of small molecule ligands
to proteins and other types of receptors.(1, 2) VM2 was developed for use by researchers
in the pharmaceutical industry to aid in drug development, as well as researchers in
academia and government laboratories for the purposes of drug discovery research and
fundamental studies of the driving forces for molecular binding.(3) Additional
applications of the VM2 technology are in the chemical and agricultural industries, where
prediction of molecular binding affinities can also aid in product research and
development.

VM2 is grounded in rigorous statistical mechanics theory of binding affinities, (4, 5) and
is suitable for application to condensed phase systems, where commonly there are
multiple degenerate and/or near-degenerate low energy molecular conformations that
have significant weightings in the Boltzmann distribution.

1.2. Binding free energy

For a receptor-ligand (RL) system in solution at equilibrium

the free energy of binding, Δ𝐺𝐺0, may be determined via the experimental equilibrium
constant 𝐾𝐾bind

Kbind ≡ �
𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶0

𝐶𝐶𝑅𝑅𝐶𝐶𝐿𝐿
�

Equilibrium

Δ𝐺𝐺0 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾bind)

where 𝐶𝐶0 is the standard concentration (usually 1 molar), and 𝐶𝐶𝑅𝑅𝑅𝑅, 𝐶𝐶𝑅𝑅, and 𝐶𝐶𝐿𝐿 are the
receptor-ligand complex concentration, the receptor concentration, and the ligand
concentration, respectively, and R and T are the ideal gas constant and temperature,
respectively.

Isothermal titration calorimetry experiments can directly measure binding free energies as
well as the constituent enthalpy and entropy terms

Δ𝐺𝐺0 = Δ𝐻𝐻0 − 𝑇𝑇Δ𝑆𝑆0

 15

1.3. Enthalpy-entropy compensation

Examination of the constituent enthalpy and entropy terms of the free energy of binding
can provide useful insight and direction when designing ligands to strongly bind to a
given receptor.

One challenge in the design of strongly binding ligands is the so-called enthalpy-entropy
compensation effect: when a ligand makes favorable interactions that lower the overall
potential energy/enthalpy, the often-resulting increase in rigidity of the ligand (and
possibly parts of the receptor) leads to a loss of entropy. The net effect, then, can be little
or no increase in the binding affinity of a ligand, even though favorable interactions with
respect to potential energy are present.

Enthalpy-entropy compensation has been widely observed both experimentally (6, 7) and
in modeling studies that adequately account for entropic effects. The following graph is
typical of host-guest data. (8)

An additional key finding is that the compensation is not in general exact, for example
the data in the above graph is roughly linear but has a width of 5 Kcal/mol or more in
parts. This means that the enthalpy alone will not necessarily indicate the relative
strengths of binding of a series of ligands to a receptor. It is, therefore, very often
necessary to include entropy effects in computational modeling of receptor-ligand
binding affinities to consistently predict correctly the ordering of ligands with respect to
their binding affinity strength.

Based on the above findings, to achieve very high binding affinities, one strategy is to
push the enthalpy-entropy compensation non-linearity further by designing ligands that
fall considerably outside the normal quasi-linear range. (9) These ligands are able to
achieve favorable interactions with respect to potential energy lowering, but do not pay a

 16

large entropy penalty for doing so. Computational free energy methods can be a useful
tool when pursuing this strategy.

1.4. Computational free energy methods

A common approach for computational prediction of relative strengths of receptor-ligand
binding is docking and scoring. While docking and scoring methodology has been found
to be effective in terms of enrichment, its use of ad hoc scoring functions means it is
unable to reliably rank ligands with respect to their binding affinities;(10) therefore, R&D
scientists are looking to more rigorous free energy calculations to provide the accuracy
they need in the context of drug development and development of other products
dependent on molecular binding properties.

VM2 is a so-called end-point method where receptor-ligand binding free energies are
determined from the standard chemical potentials of the receptor R, ligand L, and
receptor-ligand complex RL

∆𝐺𝐺0 = 𝜇𝜇𝑅𝑅𝑅𝑅0 − 𝜇𝜇𝑅𝑅0 − 𝜇𝜇𝐿𝐿0 where 𝜇𝜇0 = Standard Chemical Potential

The standard chemical potential is defined by classical statistical mechanics as an integral
over all phase space

𝜇𝜇0 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �
8𝜋𝜋2

𝐶𝐶0
�𝑒𝑒−(𝑈𝑈+𝑊𝑊) 𝑅𝑅𝑅𝑅⁄ 𝑑𝑑𝑟𝑟int�

where R is the gas constant, is the standard concentration, and the term 8𝜋𝜋2 𝐶𝐶0⁄ is
integrated external translational/rotational degrees of freedom. T is temperature, U is the
potential energy, W is solvation energy (U and W are currently molecular mechanics
(MM) based), and 𝑟𝑟𝑖𝑖nt represents internal coordinate phase space.

The integral over all phase space is difficult to compute and is a major reason for the
computational expense of the application of rigorous statistical mechanics to binding
affinity modeling of condensed phase systems such as protein-ligand complexes.

1.5. Mining minima approximation

The VM2 algorithm approximates using the 2nd-generation mining minima approach,
(11, 12) which replaces the integral over all phase space shown above with a sum of
integrals over local energy minima of the system. The following shows an example three
minima system. (Note that actual calculations involve tens to many hundreds of minima.)

 17

𝜇𝜇𝑂𝑂 = −𝑅𝑅𝑇𝑇𝑙𝑙𝑙𝑙�
8𝜋𝜋2

𝐶𝐶𝑂𝑂
�𝑍𝑍𝑖𝑖

3

𝑖𝑖

�

𝑍𝑍𝑖𝑖 = ∫ 𝑒𝑒−𝛽𝛽(𝑈𝑈(𝑟𝑟)+𝑊𝑊(𝑟𝑟))

well 𝑖𝑖 𝑑𝑑𝑟𝑟int

where Zi are local configuration integrals. This is a good approximation as long as the
dominant low energy minima of the system are found.

1.6. Molecular coordinate systems

The VM2 software uses both Cartesian and internal molecular coordinate systems.

1.6.1 Cartesian coordinates

Standard Cartesian coordinates are used for calculation of force field non-bonded pair
energies and gradients as well as solvation pair energies and gradients where required.
While the force field bonded term energies are calculated directly by the force field
defined bond, angle, and dihedral expressions, the bonded gradient terms although
calculated via bond, angle, and dihedral expressions are projected onto the Cartesian
coordinates to provide total gradients in terms of Cartesian coordinates.

1.6.2 Anchored Cartesian coordinates

If a Cartesian coordinate frame is chosen so that it rotates and translates with the
molecule, in classical statistical mechanics rotational and translational degrees of
freedom can be formally separated. (13) For systems where all atoms are mobile this
enables calculation of a Hessian matrix with no rotational/translational contaminants.

1.6.3 Bond-Angle-Torsion (BAT) internal coordinates

On reading in molecular systems, the VM2 software automatically generates a set of
bond-angle-torsion (BAT) internal coordinates. This allows transformation of Cartesian
coordinate Hessian matrices into internal coordinates, and subsequent determination of
modes that are linear combinations of bonds stretches, angle bends, and torsional

 18

rotations. These modes are useful in VM2’s conformational search algorithms (see
Section 1.7) as well as its treatment of anharmonic effects via numerical integration along
BAT mode distortions (see Section 1.8).

1.7. Conformational searching

The VM2 algorithm requires that the low energy minima/conformers of a molecular
system be found. Two basic types of conformational search are available in the VM2
package: a distort-minimization scheme, where distortions along torsional modes are
carried out followed by energy minimization of the distorted structure, and a rigid body
translation-rotation of ligands in receptor binding pockets. These two types of search may
be used separately or in conjunction.

The distort-minimization scheme, an enhanced version of the Tork algorithm (11), starts
with calculation of the matrix of the energy 2nd derivatives (Hessian) in Cartesian
coordinates, followed by transformation to internal (BAT) coordinates, removal of rows
and columns corresponding to bond and angle distortions, followed by diagonalization to
produce purely torsional modes comprising linear combinations of dihedrals. The system
is then distorted along these torsional modes (or search drivers). The distortion is broken
up into steps and between each step some relaxation of atoms not significantly weighted
in the driver occurs, while keeping the driver atoms fixed. This allows a larger distortion
before encountering steric clashes. On completion of the distortion, the resulting structure
is geometry optimized. The basic idea of the technique is to drive structures over energy
barriers and with subsequent geometry optimization to find new and lower energy
minima.

 19

1.8. Configuration integrals

The local configuration integrals

𝑍𝑍𝑖𝑖 = � 𝑒𝑒−𝛽𝛽(𝑈𝑈(𝑟𝑟)+𝑊𝑊(𝑟𝑟))

well 𝑖𝑖
𝑑𝑑𝑟𝑟int

are calculated using the Harmonic Approximation with Mode Scanning method
(HAMS),(12) when using molecular mechanics (MM) energy potentials. In this method
the Hessian (matrix of the energy 2nd derivative) is calculated in the anchored Cartesian
coordinate system, transformed to bond-angle-torsion (BAT) internal coordinates, (13)
and diagonalized, with the inverse square root of the eigenvalues providing a harmonic
approximation to the integral. Anharmonic effects are checked for the low energy modes
via numerical integrals (mode scanning). The following equation summarizes the HAMS
approach:

𝑍𝑍𝑖𝑖 ≅ 𝑏𝑏22�𝑏𝑏𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗

𝑁𝑁

𝑗𝑗=3

� 𝑆𝑆𝑘𝑘 �

⎣
⎢
⎢
⎡
�

2𝜋𝜋𝜋𝜋𝜋𝜋
𝐾𝐾𝑙𝑙

erf

⎝

⎛ 𝑤𝑤𝑙𝑙

�2𝑘𝑘𝑘𝑘
𝐾𝐾𝑙𝑙 ⎠

⎞

⎦
⎥
⎥
⎤𝑁𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑘𝑘

where b and θ are bond and angle internal coordinates (Jacobian determinant
contributions), Sk are numerical integrals, Kl are eigenvalues of the internal (BAT)
coordinate Hessian matrix, wl is the integration range of mode l, erf is the error function,
T is the temperature, and k is Bolztmann’s constant. For a more detailed theory
description see reference (12).

1.9. Filtering of conformer repeats

Conformational searches inevitably produce conformer repeats. In order to avoid double
counting of conformers in the Boltzmann averaging, the conformers produced during
VM2 calculations are checked against each other and any determined to be repeats are
discarded. This process requires determination of conformer pair RMSDs that is
symmetry aware. (14) For hosts, ligands, and host-ligand complexes the symmetry
recognition algorithm involves traversing the molecule from a starting atom and building
up a molecule name based upon the names of the atoms encountered along the traversal.
Additional molecule names are generated from other starting atoms, and name-name
matches are identified as corresponding to symmetry operations. The method detects not
only global symmetries but also local symmetries associated with bond rotations as well
as symmetries that are only apparent when alternate resonance forms are considered. For
protein-involved systems, a simpler check of between conformer amino acid side chains
that have rotational symmetries is performed.

1.10. VM2 algorithm

The VM2 algorithm is iterative (see schematic representation below), with the calculated
free energy deemed converged when it is no longer changing within a given tolerance.

 20

As the above diagram indicates, the low energy conformer search can be biased toward
lowering the free energy by seeding it each iteration with conformers that have low free
energy as opposed to low potential energy.

1.11. Molecular system partitioning

For small systems such as ligand and host molecules (600 atoms or less) all atoms in the
system are always defined as ‘real’ and ‘live’. The term ‘real’ means the atom will be
included in any calculation of the energy; the term ‘live’ means the atom is also treated as
mobile in the system, though the user can choose atoms to constrain as they wish.

For larger systems such as protein receptors, to make calculations more tractable the
system is partitioned into totally excluded atoms and a ‘real’ set of atoms. The ‘real’ set
of atoms contains a subset of atoms that are ‘live’ i.e. mobile, the rest are fixed in space.
In other words all live atoms are in the ‘real’ set, but not all ‘real’ atoms are in the ‘live’
set.

Usually the ‘live’ set are atoms in the active site of a protein; however, the user can
choose as ‘live’ any part of the protein that they have an interest in exploring structural
conformations and associated energetics e.g. specific loops or flaps in the case of 1HVR.
For protein-ligand complex calculations, the ligand atoms are treated as ‘live’ by default,
but again the user can choose ligand atoms to constrain.

The following figure shows schematically how a real/live set of atoms may be chosen
based on the position of a co-crystalized ligand in a protein active site; in this case the
‘real’ set distance cutoff is 12 Å and the ‘live’ set cutoff distance is 7 Å. The ‘live’ set is
usually chosen by atom-based distances from the ligand; whereas, the ‘real’ set is amino

 21

acid residue based, i.e., if a residue’s atom is within the cutoff distance, the whole residue
is included in the ‘real’ set.

This translates to the real/live set shown in the following figure, where purple signifies
‘live’ atoms and blue signifies ‘real’ but fixed in space atoms.

2. VM2 package modules

2.1. VM2 : Second-generation mining minima

The VM2 module makes use of all other modules in the package. As such, it initializes
and reads user input for all package modules at the start of a run. A completed VM2
calculation provides the free energy of the molecular system, which is a Boltzmann
average over the conformers found. Average energy and entropy terms are also output. In

 22

addition, an energy breakdown is provided for all individual conformers found as well as
the conformer geometry data in standard formatted files such as sdf, xyz, and mol2.

2.2. Vconf : Conformational search

The Vconf module takes one or multiple starting conformations and attempts to find
lower energy conformers. It is used by the VM2 module, for which it provides
conformations for subsequent free energy evaluation. When used by the VM2 module it
is biased toward lowering the free energy as the VM2 module feeds it starting conformers
that have the lowest free energy as opposed to lowest potential energy. It can also be used
independently to find low energy conformers based only on potential energy, as well as
provide a diverse set of ligand conformations for subsequent placement into a binding
site as a starting point for a receptor-ligand calculation.

2.3. VfreeE : Configuration integration

The VfreeE module takes one or more conformations. It is used by the VM2 module,
which feeds it previously geometry-optimized conformers. It returns individual
conformer free energies and component energies, as well as Boltzmann averages over all
conformers found. It can also be used independently, processing conformers read-in by
the package, which may have been generated previously by the VM2 package itself or by
3rd-party software.

2.4. Vstereochem : Stereochemistry

The Vstereochem module identifies the stereochemistry of starting conformers as well as
conformers generated during the course of calculations. It is used by the VM2, Vconf,
and Vgeomopt modules. It cannot currently be run independently.

2.5. Vfilter : Filtering of repeat conformers

The Vfilter module checks for and removes repeat conformers. It will check both
energies and RMSDs (see below) between conformers. The VFilter module is used by the
VM2, Vconf, and VfreeE modules; it can also be used independently to filter conformers
generated previously and read-in.

2.6. Vrmsd : Conformer RMSD

The Vrmsd module determines RMSDs of conformer pairs. It is symmetry aware (14), so
correctly determines zero RMSDs when conformer subgroups of atoms are rotated. The
Vrmsd module is used by the Vfilter module and can also be used independently to
determine RMSDs of groups conformers generated previously and read-in.

2.7. Vhessian : Hessian calculation

The Vhessian module, supplied one or more conformers, calculates the matrix of the
energy 2nd-derivatives. This module is used by the VM2, Vconf, and VFreeE modules.
The Vhessian module cannot currently be used independently.

 23

2.8. Vgeomopt : Geometry optimization

The Vgeomopt module, supplied one or more conformers, optimizes their geometries,
driving down the energy-gradient RMSD below a designated tolerance. Available
geometry optimization methods are conjugate gradient and quasi-Newton. The Vgeomopt
module is used by the VM2, Vconf, Vfilter, Vrmsd, and Vhessian modules, but can also
be used independently for previously generated conformers that are read-in.

2.9. Vpotential : Potential energy and potential energy 1st derivative

The Vpotential module, supplied one or more conformers, calculates the potential
energy(s) or potential energy plus gradient(s). The Solvation energy model(s) used
depend(s) on user input selections. The Vpotential module is always initialized as it is
utilized by all other modules. The Vpotential module can be used independently for
previously generated conformers that are read-in.

 24

II. Energy Potentials

In principle, the VM2 method can incorporate any type of molecular energy potential or
combination of molecular potentials. The current production versions are, however,
limited to standard molecular mechanics potentials.

1. Molecular mechanics potentials

1.1. Force field support

The VM2 package supports the forms of the most commonly used classical molecular
mechanics force fields, namely CHARMM (15, 16), OPLS (17), and AMBER (18, 19).
The force field parameters are supplied to the VM2 through a VeraChem formatted
topology file (see section 1.2.); therefore, the standard published parameter sets for
proteins/nucleic acids can be used as is, but can also be modified as desired by simple
text file editing. Generalized parameter sets e.g. GAFF, (20) CGenFF, (21) and Dreiding
(22) are read in via a text file of the same format.
.
1.1.1. Basic potential energy form

The basic classical force field potential energy can be written in terms of bonded and
nonbonded terms

𝑈𝑈forcefield = 𝑈𝑈bonded + 𝑈𝑈nonbonded

where

𝑈𝑈bonded = 𝑈𝑈bond + 𝑈𝑈angle + 𝑈𝑈dihedral + 𝑈𝑈improper

𝑈𝑈nonbonded = 𝑈𝑈Coulomb + 𝑈𝑈van der Waals

1.1.2. Bond and angle energy terms

The forms of the bond and angle terms are

𝑈𝑈bond = � 𝐾𝐾𝑏𝑏

bonds

𝑏𝑏

(𝑙𝑙 − 𝑙𝑙0)2

𝑈𝑈angle = � 𝐾𝐾𝑎𝑎

angles

𝑎𝑎

(𝜃𝜃 − 𝜃𝜃0)2

where 𝐾𝐾𝑏𝑏 and 𝐾𝐾𝑎𝑎 are bond and angle force constants, respectively, 𝑙𝑙 and 𝜃𝜃 are the current
bond length and angle, respectively, and 𝑙𝑙0 and 𝜃𝜃0 are the reference bond length and
angle, respectively.

1.1.3. Torsion energy terms

 25

The forms of the dihedral and improper dihedral for the CHARMM force field are

𝑈𝑈dihedral = � 𝐾𝐾𝜑𝜑

dihedrals

𝜑𝜑

�1 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛 − 𝛿𝛿)�

𝑈𝑈improper = � 𝐾𝐾𝜔𝜔

impropers

𝜔𝜔

(𝜔𝜔 − 𝜔𝜔0)2

where 𝐾𝐾𝜑𝜑 and 𝐾𝐾𝜔𝜔 are dihedral and improper torsion force constants, respectively, 𝜑𝜑 is the
dihedral angle, 𝑛𝑛 and 𝛿𝛿 are the dihedral multiplicity and phase, and 𝜔𝜔0 and 𝜔𝜔 are the
reference improper torsion angle and current improper torsion angle, respectively.

The form of both the dihedral and improper dihedral for the AMBER force field takes the
same form as the CHARMM dihedral term but with a factor of a half

𝑈𝑈torsion = �
1
2
𝐾𝐾𝜑𝜑

torsions

𝜑𝜑

�1 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛 − 𝛿𝛿)�

The OPLS torsion energy, dihedral and improper, appears in the literature as an explicit
truncated Fourier series with the coefficients 𝑉𝑉1, 𝑉𝑉2, and 𝑉𝑉3, and phase angles 𝑓𝑓1, 𝑓𝑓2, and
𝑓𝑓3,

𝑈𝑈torsion = � �
𝑉𝑉1
2

[1 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑 − 𝑓𝑓1)] +
𝑉𝑉2
2

[1 + 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜑𝜑 − 𝑓𝑓2)]
torsions

𝜑𝜑

+
𝑉𝑉3
2

[1 + 𝑐𝑐𝑐𝑐𝑐𝑐(3𝜑𝜑 − 𝑓𝑓3)]�

1.1.4. Coulomb nonbonded energy terms

The form of the CHARMM non-bonded electronic (Coulomb) term is

𝑈𝑈Coulomb = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖

nonb pairs

𝑖𝑖𝑖𝑖

where i and j are the indexes of a unique non-bonded atom pair at least three bonds apart,
𝑞𝑞𝑖𝑖 is the partial charge for atom i, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between atoms i and j, and 𝜖𝜖0 is the
permittivity of free space. For AMBER and OPLS interactions involving atoms four
bonds apart (so-called 1-4 interactions) are scaled by a factor of a half

𝑈𝑈Coulomb = � 𝑓𝑓𝑖𝑖𝑖𝑖

nonb pairs

𝑖𝑖𝑖𝑖

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖

 26

where 𝑓𝑓𝑖𝑖𝑖𝑖 = 0.5 for 1-4 interactions and 𝑓𝑓𝑖𝑖𝑖𝑖 = 1.0 for 1-N interactions, where N>4.
Literature descriptions of the OPLS Coulomb term also include the factor 𝑒𝑒2 in the
numerator for conversion from elementary charges to energy units. This conversion
factor is assumed in CHARMM and AMBER descriptions. In the VM2 package the
factor used for conversion from elementary charges to Kcal/mol is 332.054.

1.1.5. Van der Waals nonbonded energy terms

The CHARMM form of the Lennard-Jones (LJ) van der Waals non-bonded energy term
is

𝑈𝑈van der Waals = � 𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− 2�
𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑟𝑟𝑖𝑖𝑖𝑖
�
6

�
nonb pairs

𝑖𝑖𝑖𝑖

The force field LJ parameters 𝜀𝜀𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are associated with the well depth and the
minimum energy distance, respectively. The well depth and minimum energy distance
values used in the van der Walls expression for atom pairs are calculated as the geometric
mean 𝜀𝜀𝑖𝑖𝑖𝑖 = �𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 and the arithmetic mean 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄ . As is the case for
the Coulomb term, the AMBER and OPLS van der Waals expression is the same except
that it includes a scaling factor 𝑓𝑓𝑖𝑖𝑖𝑖 = 0.5 for 1-4 interactions and 𝑓𝑓𝑖𝑖𝑖𝑖 = 1.0 for 1-N
interactions, where N>4.

In practice, and is the case for the VM2 package, for reasons of computational efficiency
the van der Waals expression may be re-expressed as follows

𝑈𝑈van der Waals = � 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12

− �
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
6

�
nonb pairs

𝑖𝑖𝑖𝑖

where

𝜎𝜎𝑖𝑖𝑖𝑖 = 2−1 6⁄ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

1.1.6. CHARMM parameter sets

The CHARMM (15, 16) parameter sets for macromolecular systems as well as the
generalized set CGenFF (21) are freely available for download here
http://mackerell.umaryland.edu/charmm_ff.shtml.

1.1.7. OPLS parameter sets

Except for the most recent propriety sets, the OPLS parameter sets are available in the
literature. (17, 23-27)

1.1.8. AMBER parameter sets

http://mackerell.umaryland.edu/charmm_ff.shtml

 27

The AMBER parameter sets are provided with the ambertools download
(http://ambermd.org).

1.1.9. Dreiding parameter set

The Dreiding parameter set is published in the literature. (22)

1.2. The VeraChem topology and force field parameter file (.top)

The force field parameters discussed above are read in at the start of each VM2
calculation from a formatted text file with the extension .top. The format of this file and
the correspondence with the force field parameters identified above are now summarized.
A specific example of a .top file can be found in Section XII of this manual.

Each new section in the .top file starts with an exclamation point plus keyword.

1.2.1. Identification of force field

The first line in the VeraChem parameter file identifies the force field to be used. For
example

 !NTITLE 3

indicates that the AMBER force field will be used. The available values 1, 2, 3, and 4
correspond to CHARMM, Dreiding, AMBER, and OPLS, respectively.

1.2.2. Atom types, charges, and van der Waals parameters

The next section starts with a line with the atom keyword and the total atom count and
subsequent lines contain six columns of data e.g.

 !NATOM 3137
1 N3 14.01000 -0.20200 -0.17000 1.82400
2 H 1.00800 0.31200 -0.01570 0.60000
3 H 1.00800 0.31200 -0.01570 0.60000
4 CT 12.01000 -0.01200 -0.10940 1.90800

The column numbers and corresponding data are:
1: atom number
2: force field atom type
3: atomic mass
4: partial atomic charge
5: well depth parameter 𝜀𝜀𝑖𝑖
6: minimum energy distance parameter 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

Note that for CHARMM parameters an additional two columns can be present containing
𝜀𝜀𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 specifically for 1-4 atom pairs.

http://ambermd.org/

 28

1.2.3. Bonds and bond force constants

The bond section first line contains the bond keyword and bond count; subsequent lines
contain bond data in six columns e.g.

!NBOND: 3164
1 4 367.000 1.47100 N3 CT
4 7 310.000 1.52600 CT CT
7 10 310.000 1.52600 CT CT
1 13 367.000 1.47100 N3 CT

The column numbers and corresponding data are:
1: atom number i
2: atom number j
3: force constant 𝐾𝐾𝑏𝑏 associated with bond between atom numbers i and j
4: the reference (equilibrium) bond length 𝑙𝑙0 between atom numbers i and j
5: force field atom type of atom number i
6: force field atom type of atom number j

1.2.4. Angles and angle force constants

The angle section first line contains the angle keyword and angle count; subsequent lines
contain angle data in eight columns e.g.

 !NTHETA: 5795
2 1 3 35.000 1.911136 H N3 H
2 1 4 50.000 1.911136 H N3 CT
3 1 4 50.000 1.911136 H N3 CT
2 1 13 50.000 1.911136 H N3 CT

The column numbers and corresponding data are:
1: atom number i
2: atom number j
3: atom number k
4: force constant 𝐾𝐾𝑎𝑎 associated with angle between atom numbers i, j, and k
5: the reference (equilibrium) angle 𝜃𝜃0, in radians, between atom numbers i, j, and k
6: force field atom type of atom number i
7: force field atom type of atom number j
8: force field atom type of atom number k

1.2.5. Proper dihedrals and corresponding parameters

The proper dihedral section first line contains the proper dihedral keyword and unique
proper dihedral count; subsequent lines contain dihedral data in twelve columns e.g.

 !NPHI: 8474
16 15 17 18 2.0000 1.0000 0.0000 1 O C N H
16 15 17 18 2.5000 2.0000 3.1416 1 O C N H
16 15 17 19 2.5000 2.0000 3.1416 1 O C N CT
13 15 17 18 2.5000 2.0000 3.1416 1 CT C N H
13 15 17 19 2.5000 2.0000 3.1416 1 CT C N CT

 29

14 13 15 16 0.0000 2.0000 0.0000 1 HP CT C O
14 13 15 17 0.0000 2.0000 0.0000 1 HP CT C N

The column numbers and corresponding data are:
1: atom number i
2: atom number j
3: atom number k
4: atom number l
5: force constant 𝐾𝐾𝜑𝜑 associated with torsion between atom numbers i, j, k, and l
6: the multiplicity 𝑛𝑛 associated with torsion between atom numbers i, j, k, and l
7: the phase 𝛿𝛿 for the current term
8: integer setting force constant sign
9: force field atom type of atom number i
10: force field atom type of atom number j
11: force field atom type of atom number k
12: force field atom type of atom number l

1.2.6. Improper dihedrals and corresponding force constants

The improper dihedral section first line contains the improper dihedral keyword and
improper dihedral count; subsequent lines contain improper dihedral data in eleven
columns e.g.

 !NIMPHI: 550
13 17 15 16 10.50 3.14 2.0 CT N C O
15 19 17 18 1.10 3.14 2.0 C CT N H
24 29 27 28 10.50 3.14 2.0 CT N C O
27 30 29 31 1.00 3.14 2.0 C H N H
19 34 32 33 10.50 3.14 2.0 CT N C O

The column numbers and corresponding data are:
1: atom number i
2: atom number j
3: atom number k
4: atom number l
5: force constant 𝐾𝐾𝜑𝜑 associated with torsion between atom numbers i, j, k, and l
6: the phase 𝛿𝛿 for the current term
7: the multiplicity 𝑛𝑛 associated with torsion between atom numbers i, j, k, and l
8: force field atom type of atom number i
9: force field atom type of atom number j
10: force field atom type of atom number k
11: force field atom type of atom number l

1.2.7. Nonbonded ‘fixes’

This section is only relevant for the CHARMM force field and allows van der Waals
parameters for specific pairs of atom types to be modified e.g.

!NBFIX: 1
H O -0.30 1.50 -0.15 1.50

 30

(Note: the VM2 code currently expects 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, not the uncombined parameters 𝜀𝜀𝑖𝑖,
𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝜀𝜀𝑗𝑗, and 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, as is the case for the CHARMM standard parameter file)

1.2.8. Final count of atoms, bonds, angles, proper and improper dihedrals

This section provides the atom, bond, angle, proper dihedral, and improper dihedral
counts. Note that here the proper dihedral count includes all dihedrals in possible series
expansions. The last column containing 9999 is not used.

 !NFINAL: 6
3137 3164 5795 11874 550 9999

1.2.9. !NDON

This section if present will be ignored.

1.3. Solvation models

A solvation treatment is essential for any quantitative prediction of condensed phase
binding affinities. The VM2 package supports continuum methods for modeling of bulk
solvation effects. Solvent molecules that play a direct role in ligand binding can be
explicitly included if desired.

1.3.1. Generalized Born (GB)

The Generalized Born solvation model (28) is available for energy and energy 1st and 2nd
derivative calculations. The GB electrostatic polarization solvation energy is given by

𝑊𝑊el
GB = −166.027 �

1
𝜖𝜖int

−
1
𝜖𝜖ext

���
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

�𝑟𝑟𝑖𝑖𝑖𝑖2 + 𝛼𝛼𝑖𝑖𝑖𝑖2 𝑒𝑒
−𝐷𝐷𝑖𝑖𝑖𝑖�

0.5

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

where 𝛼𝛼𝑖𝑖𝑖𝑖 = �𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗�

0.5
 and 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖2 �2𝛼𝛼𝑖𝑖𝑖𝑖�

2
�

The indices i and j run over atoms, 𝜖𝜖int is the dielectric constant of the internal (solute)
medium (1.0 for gas phase), 𝜖𝜖ext is the dielectric constant of the external medium (80.0
for water), q are the partial atomic charges, 𝑟𝑟𝑖𝑖𝑖𝑖is the distance between atoms i and j, and
𝛼𝛼𝑖𝑖 is the Born radius of atom i (defined below). The total potential energy with GB
solvation energy is then given by addition to the force field potential energy

𝐸𝐸𝑡𝑡otal
𝐺𝐺𝐺𝐺 = 𝑈𝑈forcefield + 𝑊𝑊el

GB

Currently only the Still method (29) for calculation of the required Born radii is
supported. In this approach approximate Born radii are calculated analytically by the
expression

 31

𝛼𝛼𝑗𝑗 = −�−166.027 𝑊𝑊𝑒𝑒𝑒𝑒,𝑗𝑗
𝐺𝐺𝐺𝐺′⁄ �

where

𝑊𝑊𝑒𝑒𝑒𝑒,𝑗𝑗
𝐺𝐺𝐺𝐺′ =

𝑊𝑊𝑒𝑒𝑒𝑒,𝑗𝑗
𝐺𝐺𝐺𝐺

1 − 1
𝜖𝜖

=
−166.027

𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑖𝑖 + 𝜙𝜙 + 𝑃𝑃1
+ �

𝑃𝑃2𝑉𝑉𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖4

stretch

𝑖𝑖

+ �
𝑃𝑃3𝑉𝑉𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖4

bend

𝑖𝑖

+ �
𝑃𝑃4𝑉𝑉𝑗𝑗CCF
𝑟𝑟𝑖𝑖𝑖𝑖4

nonbonded

𝑖𝑖

and 𝑊𝑊𝑒𝑒𝑒𝑒,𝑗𝑗

𝐺𝐺𝐺𝐺 is the polarization energy of atom j in Kcal/mol, φ is a dielectric offset, 𝑉𝑉𝑗𝑗 is the
volume of atom j, 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑖𝑖 is the van der Waals radius (or solvation cavity radius) of atom
i, P1 is the single atom scale factor, P2 is the bonded 1,2 atom pair scale factor, P3 is the
angle 1,3 atom pair scale factor, and P4 is the nonbonded 1,≥4. CCF is the close contact
function for nonbonded 1,≥4 interactions and is given by

CCF = 1.0 if � 𝑟𝑟𝑖𝑖𝑖𝑖
𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑖𝑖 − 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑗𝑗

�
2

> 1
𝑃𝑃5

else

CCF = �0.5 �1.0 − 𝑐𝑐𝑐𝑐𝑐𝑐 ��
𝑟𝑟𝑖𝑖𝑖𝑖

𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑖𝑖 − 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑗𝑗
�
2

𝑃𝑃5𝜋𝜋���
2

The default solvation cavity radii used in VM2 is 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 2⁄ , with the exceptions of
hydrogen atoms bonded to a hetero atom and covalently bound F atoms, which are set to
1.15 and 2.00 Angstroms, respectively. The user can choose from a range of alternative
solvation cavity radii including 𝜎𝜎 2⁄ , bondi,(30) and mbondi. (31)

The default scaling factors P1-P5 are those from the original fit in reference (29). An
alternative set of scaling factors, which were fit for a single protein-ligand system (HIV-1
protease with inhibitor KNI-272) are also available. (32)

1.3.2. Constant dielectric (CD)

A constant dielectric solvation model is available for energies, and energy 1st and 2nd
derivatives. This very basic damping solvation model divides the Coulomb energy term
by a dielectric constant. The default is the dielectric of water 𝜖𝜖 = 80.0.

𝑈𝑈CD-Coulomb = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖
∙

nonb pairs

𝑖𝑖𝑖𝑖

1
𝜖𝜖

The VM2 package calculates a “solvation energy” due to this model by simply backing
out the vacuum Coulomb energy i.e.

 32

𝑊𝑊𝐶𝐶𝐶𝐶 = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜖𝜖0𝑟𝑟𝑖𝑖𝑖𝑖
∙

nonb pairs

𝑖𝑖𝑖𝑖

�
1
𝜖𝜖
− 1�

The total potential energy with CD solvation can then be written as

𝐸𝐸𝑡𝑡otal
𝐶𝐶𝐶𝐶 = 𝑈𝑈forcefield + 𝑊𝑊𝐶𝐶𝐶𝐶

1.3.3. Distance dependent dielectric (DD)

A distance dependent dielectric solvation model is available for energies, and energy 1st
and 2nd derivatives. This is also a very basic model that varies the dielectric with distance
between atom pairs. The default is to divide the Coulomb energy term by 4𝑟𝑟𝑖𝑖𝑖𝑖

𝑈𝑈CD-Coulomb = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖
∙

nonb pairs

𝑖𝑖𝑖𝑖

1
4𝑟𝑟𝑖𝑖𝑖𝑖

Again, the VM2 package calculates a “solvation energy” by simply backing out the
vacuum Coulomb energy i.e.

𝑊𝑊𝐷𝐷𝐷𝐷 = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖
∙

nonb pairs

𝑖𝑖𝑖𝑖

�
1

4𝑟𝑟𝑖𝑖𝑖𝑖
− 1�

The total potential energy with DD solvation can then be written as

𝐸𝐸𝑡𝑡otal
𝐷𝐷𝐷𝐷 = 𝑈𝑈forcefield + 𝑊𝑊𝐷𝐷𝐷𝐷

1.3.4. Poisson Boltzmann Surface Area (PBSA)

The Poisson Boltzmann Surface Area solvation model is available for energy
calculations. As in the GB case, the PBSA potential energy (or potential of mean force
(PMF), given it is an average over solvent degrees of freedom for a particular solute
conformation rp) is added to the force field potential energy to give a total potential
energy

𝐸𝐸�r𝑝𝑝� = 𝑈𝑈forcefield + 𝑊𝑊�r𝑝𝑝�

el
+ 𝑊𝑊�r𝑝𝑝�

np

where 𝑊𝑊�r𝑝𝑝�

el
 is the electrostatic solvent polarization term and 𝑊𝑊�r𝑝𝑝�

np
is the non-polar

term which is proportional to the accessible surface area of the solute. The electrostatic
term is calculated via the solvent induced electrostatic potential 𝜙𝜙𝑗𝑗 at each solute atom j,
and its partial atomic charge 𝑞𝑞𝑗𝑗

𝑊𝑊�r𝑝𝑝�

el
= 1

2
∑ 𝑞𝑞𝑗𝑗𝑗𝑗 𝜙𝜙𝑗𝑗 .

 33

The electrostatic potential 𝜙𝜙𝑗𝑗 at atomic charge 𝑞𝑞𝑗𝑗 is determined by solving the Poisson-
Boltzmann equation

∇ϵ(r)∇ϕ(r) = 4𝜋𝜋ρ(r) − 4𝜋𝜋�𝑧𝑧𝑖𝑖

𝑖𝑖

𝑐𝑐𝑖𝑖𝑒𝑒[−𝑧𝑧𝑖𝑖ϕ(r) 𝑘𝑘𝐵𝐵⁄ 𝑇𝑇]

where ϵ(r) is the dielectric constant, ϕ(r) is the electrostatic potential, ρ(r) is the solute
charge, 𝑧𝑧𝑖𝑖 is the charge of ion type i, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, T is the temperature,
𝑐𝑐𝑖𝑖 is the bulk density of ion type i far from the solute.

The PBSA implementation in the VM2 package solves the linearized PB equation
through finite differencing on a grid. (33-35) A nonlinear solver is not currently
available.

The accessible surface area of the solute used for calculating the non-polar energy term is
determined ……………

Boundary condition calculation, modified incomplete Cholesky conjugate gradient
(ICCG) solver, and energy-from-dielectric-boundary calculation …………

2. Quantum mechanics

Quantum mechanics potentials are not supported in this version of the VM2 package.

 34

III. Installation

1. Obtaining the VM2 package, and package choices

1.1. Commercial licensing

To obtain the VM2 package for commercial use contact sales@verachem.com.

Commercial licensing available includes one and two year licenses as well as a perpetual
license. Multi-site licenses are available.

1.2 Trial license

To obtain a trial license for the VM2 package contact sales@verachem.com

Free three-month licenses are available for users to trial the fully functional parallel
processor enabled VM2 package.

1.3 Academic licensing

To obtain the VM2 package for academic use contact info@verachem.com

Provide your name, position, and institution, and outline in general terms your intended
use of the software.

1.4 Package choices

A number of choices are available, which range in capability from ligand only
calculations in serial processor mode to protein-ligand binding affinity calculations run in
parallel processor modes. The following table shows the various packages available and
their capabilities:

VM2 Package Parallelization

Maximum atom count
Real atoms Live atoms

Ligand only Serial, MPI - 200
Host+ligand Serial, MPI - 600
Protein+ligand Serial, MPI,

MPI+OpenMP,
MPI+CUDA,
MPI+OpenMP+CUDA

10000 3000

Full suite Serial, MPI,
MPI+OpenMP,
MPI+CUDA,
MPI+OpenMP+CUDA

10000 3000

Full suite - large Serial, MPI,
MPI+OpenMP,
MPI+CUDA,
MPI+OpenMP+CUDA

10000 5000

mailto:sales@verachem.com
mailto:sales@verachem.com
mailto:info@verachem.com

 35

2. Operating systems and hardware

The VM2 package currently runs on Linux desktops, workstations, and clusters. It can
also take advantage of GPU acceleration.

2.1. Linux workstations

The serial, MPI, and MPI-OpenMP VM2 packages can be installed any workstation with
Intel CPU(s) and two gigabytes of RAM per compute core or more available, which is
running Linux kernel 2.6.32 or later e.g. CentOS 6.9+, Ubuntu 14.04+, etc. It is
recommended that a minimum of 8 CPU cores is available for computation.

2.2. Linux desktops

These VM2 packages can also run on commodity desktop Intel PCs running Linux kernel
2.6.32 or later that have adequate memory, though recommended use would be for
smaller calculations (ligand, hosts, host-ligand complexes), with dedicated workstations
more suitable for the more computationally demanding protein and protein-ligand
complex calculations.

2.3. Linux clusters

The MPI and MPI-OpenMP VM2 packages can run across clusters of workstations (or
clusters of commodity machines in the case of Beowulf clusters). Given that the MPI
parallelization schemes are not communication bound slower Ethernet interconnects are
adequate, though parallel MPI also works with the faster InfiniBand interconnects if
present.

2.4. Linux workstations and clusters with NVIDIA GPU acceleration

The MPI-CUDA and MPI-OpenMP-CUDA VM2 packages can take advantage of
NVIDIA GPUs (Fermi and Kepler architectures) for acceleration of parts of its algorithm.
This includes use of multi-GPU workstations and clusters of workstations each with
multiple GPUs.

2.5. OSX

VM2 is not currently available for OSX.

2.6. MS Windows

VM2 is not currently available for MS Windows.

3. Installation procedure

3.1. Download the VM2 package

 36

After downloading the VM2 package and the example set

vcCompChem_<version>.tar.bz2

vcCompChem_<version>_examples.tar.bz2

where version is the major, minor, and sub-minor version numbers. (e.g. 2_7_050),
uncompress and untar them in location of your choice, e.g.

tar xvf vcCompChem_<version>.tar.bz2

tar xvf vcCompChem_<version>_examples.tar.bz2

will create the directories

 vcCompChem_<version>/

 vcCompChem_<version>_examples/

in the directory you are currently in.

3.2. License file

Copy your license file, named vm2_license.LIC, into the vcCompChem_<version>/exe
directory.

3.3. Environment variables for installation

These installation instructions assume the bash shell is being used. Place the following
shell commands and environment variable settings in your .bashrc file, which should
then be sourced prior to running the installation script. You may use another default shell
as you wish, as long as the equivalent command/same environment variables are set.

Modify the variable VCHOME to reflect the location of the directory resulting from the
tar file extraction above.

--
ulimit -s unlimited
export VCHOME=/home/<my_user_name>/vcCompChem_<version>
export VM2HOME=$VCHOME
export VCPYTHON=$VCHOME/exe/vc_python
export VM2PYTHON=$VCPYTHON

--

3.4 Requirements for installation

It may be necessary, depending on the Linux flavor being used, to install packages such
as tcsh and g77.

 37

zlib-devel.x86_64 might be required to compile python and gcc-c++.x86_64 for the
extensions. In most cases these packages will already be installed on the system.

To check for already installed libraries:

CentOS, RHEL:
 yum list zlib-devel
 yum list gcc
 yum list g++

Debian, Ubuntu:
 dpkg -l zlib-devel
 dpkg -l gcc

3.5 Installation script

The following sequence of commands should complete the installation.

 cd vcCompChem_<version>
 cd build
 ./install_vcCompChem.sh

The installation will take several minutes. At the conclusion of the installation steps an
automated test set will run, which may also take several minutes to complete.
If any of the automated tests fail, relevant information will be found in the log files they
generate in the vcCompChem_<version>/tests directory. One common issue is that the
VCHOME and/or VCPYTHON environment variable(s) are not set or set incorrectly.
Check this by typing:

 echo $VCHOME

 echo $VCPYTHON

Please contact VeraChem for support at support@verachem.com if you have difficulties
with installation.

4. Installed VM2 package structure

The installed VM2 package directories of interest are:

$VCHOME/documentation
$VCHOME/exe
$VCHOME/lib
$VCHOME/tests

The documentation directory contains a PDF of the package manual and a text file
containing the installation directions. The exe directory contains helper software tools
and the VM2 executables themselves.

mailto:support@verachem.com

 38

4.1. Helper tools

A set of helper command line software tools are present in the $VCHOME/exe directory.
Currently, the most useful of these are:

4.1.1. VCharge : assignment of partial atomic charges

VCharge provides fast, easy access to accurate partial charges for virtually any drug-like
compound. As input it requires an sdf/mol file. In addition to the Linux command line
version supplied with this package, a GUI version is available.

4.1.2. VConf : 2D to 3D and small molecule conformational search

VConf is a standalone conformational search application, which processes an SD file of
drug-like compounds containing an initial 2D or 3D conformation of each molecule. In
addition to the Linux command line version supplied with this package, a GUI version is
available.

4.1.3. prm2top : AMBER formatted input data files to VM2 input data files

This tool given AMBER format .prmtop and .inpcrd files, outputs VM2 input data files –
see Section V. 5.1.

4.1.4. psf2top : CHARMM formatted input data files to VM2 input data files

This tool given a CHARMM format .psf file and .sdf/.mol file, outputs VM2 input data
files – see Section V. 5.2.

4.1.5. mmo2top : Schrodinger mmo file to VM2 input data files

This tool given a Schrodinger .mmo file, output VM2 data files – see Section V. 5.3.

4.2. VM2 executables

The VM2 executables present in the $VCHOME/exe directory depends on the licensing
level – see Section 1.4 above.

 Ligand only: VC_CompChemPackage_serial.exe
 VC_CompChemPackage_mpi.exe

Host+ligand: VC_CompChemPackage_serial.exe
 VC_CompChemPackage_mpi.exe

Protein+ligand: VC_CompChemPackage_serial.exe
 VC_CompChemPackage_mpi.exe
 VC_CompChemPackage_mpi_openmp.exe
 VC_CompChemPackage_mpi_openmp_cuda.exe

http://www.verachem.com/wp-content/uploads/2013/05/vcharge_v1.pdf
http://www.verachem.com/products/vcharge/
http://www.verachem.com/wp-content/uploads/2013/05/vconf_v2.pdf
http://www.verachem.com/products/vconf/

 39

Full suite: VC_CompChemPackage_serial.exe
 VC_CompChemPackage_mpi.exe
 VC_CompChemPackage_mpi_openmp.exe
 VC_CompChemPackage_mpi_openmp_cuda.exe

Full suite - large: VC_CompChemPackage_serial.exe
 VC_CompChemPackage_mpi.exe
 VC_CompChemPackage_mpi_openmp.exe
 VC_CompChemPackage_mpi_openmp_cuda.exe

4.3. Supplied libraries

The following run time libraries are supplied in $VCHOME/lib :

/intel Required Intel math, linear algebra, and parallel processing
 libraries (MPI, OpenMP.)

/cuda Required Nvidia CUDA libraries for running on GPUs.

/magma Required linear algebra libraries for running on GPUs.

5. Environment variables for running validation calculations

The following environment variables must be set before running a calculation.
They can either be set in the user’s .bashrc or, preferably, within a script used to launch
the calculation. Note that the actual values of OMP_NUM_THREADS and
MKL_NUM_THREADS will depend on the type of parallel run being requested. See
Sections VI 4. and VI 5. below for examples of different runs and alternatives to bash
shell scripts e.g C-shell, PBS, SLURM.

--
ulimit -s unlimited

INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m
--

 40

Since other software besides VM2 may depend on existing MPI and CUDA
configurations, care should be taken when setting the variables to ensure that
they only affect the environment in which VM2 software is being run.

6. Validation tests

A set of validation tests is available in the vcCompChem_<version>/tests directory. A
subset of these tests is run automatically after installation, as alluded to above. These tests
are a basic confirmation of installation. It is recommended that the user run all the tests
appropriate to their intended use of the package (set up pathway type and hardware
configurations) to confirm correct installation.

A python script that automates the full set of tests is provided:

 run_all_tests.py

This script will run the entire verachem test suite and validate the results.
The command line argument -py will only run python helper tools tests, -vm2 will only
run vm2 tests , -c will add cluster tests, and -g will add gpu tests. The default with
no arguments will run the python helper tools tests, then vm2 tests, but no cluster or gpu
tests.

To run the subset of tests run automatically after installation use:

 run_install_tests.py

6.1. Helper tools validation tests

The supplied helper tool validation tests check that the file format conversions for the
Maestro/Macromodel, AmberTools, and Biovia Discovery Studio set up pathways (see
Section V.5.) are functioning correctly.

6.1.1. Maestro/Macromodel pathway

This test is run automatically after installation. To run manually, carry out the following
commands, monitor for error messages, and examine log.out for differences with
reference values:

 cd vcCompChem_<version>/tests/mmo2top/ligand_08

 ./run.sh

 ./verify.sh

6.1.2. AmberTools pathway

 41

This test is run automatically after installation. To run manually, carry out the following
commands, monitor for error messages, and examine log.out for differences with
reference values:

 cd vcCompChem_<version>/tests/prm2top/1ke5/ligand

 ./run.sh

 ./verify.sh

 cd vcCompChem_<version>/tests/prm2top/1ke5/protein

 ./run.sh

 ./verify.sh

6.1.3. Biovia Discovery Studio Visualizer (DSV) pathway

To run this test the variable VCDSPATH must be set to the location of the CHARMm
forcefield files from your installation of Discovery Studio Visualizer. (For the 2016
version on the PC this is DiscoveryStudio_2016/share/forcefield/CHARMm.)

Carry out the following commands, monitor for error messages, and examine log.out for
differences with reference values:

 cd vcCompChem_<version>/tests/psf2top/1ke5/ligand

 ./run.sh

 ./verify.sh

 cd vcCompChem_<version>/tests/prm2top/ psf2top/1ke5/protein

 ./run.sh

 ./verify.sh

6.1.4. VCharge validation test

This test is run automatically after installation. To run manually, carry out the following
commands, monitor for error messages, and examine log.out for differences with
reference values:

 cd vcCompChem_<version>/tests/vcharge

 42

 ./run.sh

 ./verify.sh

6.1.5. VConf validation test

This test is run automatically after installation. To run manually, carry out the following
commands, monitor for error messages, and examine log.out for differences with
reference values:

 cd vcCompChem_<version>/tests/vconf

 ./run.sh

 ./verify.sh

6.2. VM2 validation tests

The tests for vm2 are located in vcCompChem_<version>/tests/vm2 . The test mpi_4 is
run automatically after installation.

mpi_16/
mpi_4/
mpi_8/
mpi_cuda/
mpi_openmp_8_2/
mpi_openmp_8_4/
mpi_openmp_cuda/

Each test is named for a different configuration of mpi, openmp, and cuda. Most tests
include scripts for use with PBS / Torque and when running interactively. The PBS
scripts will need to be modified to match your computing environment, queue names, run
time limits, etc.

Example output is provided in the reference subdirectory of each test. If you open either
.out file, the time required for the test on our hardware will be found at the bottom of the
file.

 43

IV. Parallel processing

1. VM2 serial calculation bottlenecks

As described in Section I, a typical VM2 calculation is iterative and during each iteration
a search for the system’s low energy minima occurs (conformational search) followed by
computation of local configuration integrals for this new batch of minima (after filtering
out repeats). The cumulative free energy is then calculated and if it is no longer changing
within a given tolerance the calculation is deemed converged. Timings for typical VM2
iterations show that the conformational search and the computation of configuration
integrals are bottlenecks (see red blocks in following diagram) and so are targeted for
parallelization by distribution across multiple computer processors.

These bottleneck steps can be further broken down into constituent tasks:

 44

2. Parallelization strategy

VM2 uses two parallelization approaches to address the identified bottlenecks above. The
first, a coarse-grained parallelization, distributes the loops “i=1,N searches” and “j=1,L
unique confs”, across Message Passing Interface (MPI) processes.(36) The MPI
distributed tasks are each relatively large and require replicated memory. The second, a
fine-grained parallelization approach, distributes smaller constituent tasks such as
calculation of an energy-gradient (used in energy minimization of structures) or Hessian
transformation and diagonalization (required for configuration integrals), across compute
cores. This finer grained distribution across cores is most efficient with a shared memory
approach, such as OpenMP. (37)

We have pursued both coarse and fine-grained approaches, as each can be applied
independently or combined to take best advantage of available hardware with respect to
system size. For example, for systems where more than ~ 1000 atoms are allowed to be
mobile, a purely coarse-grained replicated memory approach can lead to oversubscription
to resources such as main memory and cache. If the two approaches are combined,
however, the larger coarse-grained tasks are themselves parallelized using shared
memory, thereby using less resources and using them more cooperatively.

3. MPI coarse-grained parallelization

3.1. Coupled MPI conformational search

The “coupled” MPI implementation of VM2’s conformational search, in which processes
continually compare the energies they have found, can exhibit super-linear speed up with
respect to conformer throughput with the number of MPI processes. This is because the
algorithm can sometimes, in effect, look ahead compared to the serial algorithm as a
particular MPI process may happen to find a considerably lower energy conformer, and
other MPI processes can then switch to searching from that structure.

 45

3.2. Uncoupled MPI conformational search: introduction of diversity

The coupled MPI conformational search procedure always communicates amongst the
MPI processes which process had found the lowest energy conformer so all processes can
then use it as a basis for the ongoing search. It was found that occasionally this approach
led the search to stall before lower energy conformers were found. This problem was
addressed by injecting conformer diversity through periodically assigning structurally
different conformers to each MPI process and allowing them to be searched on
independently. This is referred to as an “uncoupled” MPI conformational search in
subsequent sections of this documentation.

This combination of all processes working on the same conformers (coupled) and then
periodically working on structurally diverse conformers independently (uncoupled) has
been found to be very effective at finding low energy conformers. Various ways of
assigning sets of conformers for coupled and uncoupled searches to the available MPI
processes at the start of each VM2 conformational search step have been implemented
.(See Section VIII 7.)

3.3. Non-blocking MPI communication

The coupled MPI implementation of the conformational search requires periodic
communication of the lowest energy structure found between processes by use of MPI
collective communication routines (e.g. MPI_ALLREDUCE), which results in a
synchronization event between all MPI processes. For MPI VM2 protein-ligand
calculations this leads to processes falling idle for significant amount of time while

 46

waiting for other processes to “catch up” before the collective communication canoccur.
Therefore, an approach using non-blocking MPI calls was implemented, which allows
processes to communicate their lowest energy conformers with other processes without a
synchronization event.

4. Fine-grained parallelization

The figure below summarizes tasks in the VM2 algorithm targeted, based on profiling,
for fine-grained parallelization. Scaling with respect to the number of atoms included in
the calculation (mobile as well as those fixed in space) is also shown.

Shared-memory fine-grained parallelization of the routines associated with these tasks for
both standard CPU multicore architectures using OpenMP and for GPU multicores using
CUDA (https://developer.nvidia.com/cuda-zone) has been carried out. Energy
minimization (i.e. geometry optimization) and mode scanning tasks are sped up by calls
to shared-memory parallelized molecular mechanics plus Generalized Born solvation
related energy and energy-gradient routines, transformation and diagonalization of the
Hessian is addressed by use of calls to fine-grained parallelized linear algebra routines,
and the PBSA energy correction is sped up by fine-grained parallelization of routines
specified below (Section 4.1.3.).

4.1. OpenMP

4.1.1. OpenMP fine-grained parallelization of GB energy-gradient

OpenMP parallelization of energy-gradient routines, including those related to
Generalized Born solvation terms, have been implemented by distribution of the inner
loop of the atom-pair loop across cores. At the same time the inner loop takes advantage
of cache blocking and vectorization via use of highly optimized vector math libraries e.g.

https://developer.nvidia.com/cuda-zone

 47

https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-
functions .

4.1.2 OpenMP parallelization of Hessian transformation and diagonalization

OpenMP fine-grained parallelization of the transformation of the Cartesian coordinate
Hessian to matrix to bond-angle-torsion (BAT) coordinates and diagonalization is
achieved by calls to appropriate parallelized linear algebra routines.
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-
with-threading

4.1.3 OpenMP parallelization of PBSA

Profiling of the PBSA energy calculations carried out during VM2 calculations revealed
that the boundary condition, modified incomplete Cholesky conjugate gradient (ICCG)
solver, and energy-from-dielectric-boundary routines are where the majority of time is
spent. OpenMP parallelization of the boundary condition and energy-from-dielectric-
boundary routines has been carried out. Work is ongoing to OpenMP parallelize the
solver step.

4.2. CUDA

4.2.1. CUDA based fine-grained parallelization of the GB energy-gradient

CUDA parallelization of energy-gradient routines, including those related to Generalized
Born solvation terms, has been implemented and integrated with the VM2 quasi-Newton
and conjugate gradient geometry optimization algorithms.

4.2.2. CUDA parallelization of Hessian transformation and diagonalization

CUDA parallelization of the transformation of the Cartesian coordinate Hessian to matrix
to bond-angle-torsion (BAT) coordinates and diagonalization is implemented via calls to
the Matrix Algebra on GPU and Multicore Architectures library.
http://icl.cs.utk.edu/magma/

5. Combined coarse grained – fine grained parallelization of VM2

The parallel processor capabilities described above, namely a coarse-grained MPI
implementation of VM2 and fine-grained parallelization of various VM2 constituent
methods provide the infrastructure for a combined coarse grained-fine grained VM2
capability that can make optimal use of computer clusters regardless of the calculation
size i.e. atom count.

https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-with-threading
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-with-threading
http://icl.cs.utk.edu/magma/

 48

5.1. MPI-OpenMP

The MPI-OpenMP combined package is suitable for running calculations on workstations
and clusters of workstations.

5.2. MPI-CUDA and MPI-OpenMP-CUDA

The MPI-CUDA and MPI-OpenMP-CUDA packages are suitable for running calculations on
workstations and clusters of GPUs with multiple GPUs.

 49

V. Molecular system and input data file preparation

1. Molecular systems

VM2 can, in principle, be applied to any molecular system - size restrictions
notwithstanding. The restriction in the currently available packages to standard classical
molecular mechanics force fields does, however, preclude its use to describe bond
breaking or excited state molecular processes.

The VM2 package suite has been tested for, and applied to, ligand molecules, protein
macromolecules, protein-ligand complexes, host molecules, and host-ligand complexes.

1.1. Ligands

In the context of VM2 calculations, ligands are molecules ranging from a few atoms to
usually no more than one hundred atoms, and with a current enforced limit of three
hundred atoms. All license levels of the VM2 software package are ligand calculation
capable.

VM2 offers very exhaustive conformational sampling for ligand molecules, which results
in the reliable determination of global minima for the particular molecular mechanics
energy potential in use. It also provides a Boltzmann distribution of ligand conformations
in solvent. For large “floppy” ligands this is essential to accurately determine loss of
entropy on binding.

Figure.

1.2. Proteins

Protein macromolecules range from hundreds to tens of thousands of atoms. Unlike most
software packages for calculation of molecular properties of proteins, VM2 does not use
molecular dynamics methodology. Instead, as outlined in Section I, VM2 is an end-point
based method and therefore employs very robust conformational searching of mobile
protein atoms. This can be useful in various scenarios, in addition to the main focus of
binding energy calculations, including full relaxation of chains that have been grafted on
to incomplete structures.

1.3. Protein-ligand complexes

The accurate prediction of relative binding affinities of small molecules (ligands) to
protein active sites is the central goal of the VM2 software package.

 50

1.4. Host-ligand complexes

Host molecules such as cyclodextrin or cucurbituril can provide useful models to study
binding affinity models. Due to their relatively small size, the conformational sampling
burden, while still present, is less than for protein systems leading to much faster
turnaround of calculations. As such, repeated rounds of calculations to study effects of
various aspects of energy potentials can be carried out with modest computational cost.

In addition, the accurate prediction of binding affinities of ligand (or guest) molecules to
hosts is useful in many applied research areas: drug discovery, enantiomeric separation
science, chemical pollutant removal, and scavengers for chemical warfare agent removal,
are examples.

2. Molecular system data sources

There are numerous sources that provide molecular data that can be a starting point for
computational studies or research projects using the VM2 package. The following are
commonly used.

2.1. The Protein Data Bank (PDB)

The PDB (http://www.rcsb.org/pdb/home/home.do) is repository of over one hundred
thousand biological macromolecular structures. Many of the macromolecular structures
contain co-crystalized ligands, providing an indication of, for example, a particular
protein’s active site.

The PDB provides structural data files for download in the PDB and CIF formats.

2.2. The Cambridge Crystallographic Data Centre (CCDC)

http://www.rcsb.org/pdb/home/home.do

 51

The CCDC (http://www.ccdc.cam.ac.uk/pages/Home.aspx) is a leading provider of small
molecule crystal structure data. Over 875,000 fully curated entries are available for
download in CIF format.

2.3. The Binding Data Base (BindingDB)

From the website the BindingDB (https://www.bindingdb.org/bind/index.jsp) is “a
public, web-accessible database of measured binding affinities, focusing chiefly on the
interactions of protein considered to be drug-targets with small, drug-like molecules.” It
currently contains over 1,346,000 entries, for ~7,100 protein targets and ~ 600,000 small
molecules.

Structural data as well as binding affinity data are available for download in various
formats. This includes computationally docked conformations of congeneric series of
ligands with their targets https://www.bindingdb.org/bind/surflex_entry.jsp .

 2.4. Chemical components in the PDB (PDBeChem)

From the website the PDBeChem (http://www.ebi.ac.uk/pdbe-srv/pdbechem/) is a
dictionary of chemical components – ligands, small molecules, and monomers – referred
to in PDB entries. There are currently over 24,000 entries. A comprehensive search
facility is provided.

The entries provide downloads of the component in multiple formats e.g. .mol, .mol with
hydrogen atoms added (idealized structure), .pdb (ideal representation), mmCIF, CML,
SMILES, etc.

2.5. ZINC: free database of commercially available compounds

From the website, http://zinc15.docking.org, ZINC “contains over 100 million
purchasable compounds in ready-to-dock, 3D formats.”

The ZINC database (38) integrates and curates biological activity, chemical property, and
commercial availability data for small molecules from public sources. In addition,
calculated properties are added into a chemistry-aware relational database. It is an easy to
use GUI for database interrogation and 3D structures for all molecules may be
downloaded in mol2 and sdf formats, with biologically relevant tautomers and
protonation states available for each compound.

3. Molecular system preparation steps and computational model choices

Once molecular data from one or more of the above sources is obtained, further
preparation steps are required. These steps may include manipulation; for example,
removal of some atoms and addition of others, to achieve chemistry related preferences
such as particular protonation states. Specific step-by-step examples are described in
Sections IX through XI: the following gives a general overview of potential issues and
choices to be made.

http://www.ccdc.cam.ac.uk/pages/Home.aspx
https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/surflex_entry.jsp
http://www.ebi.ac.uk/pdbe-srv/pdbechem/
http://zinc15.docking.org/

 52

3.1. Proteins

Often the starting point for a protein model preparation will be a PDB file downloaded
from the Protein Data Bank (see Section 2.1 above). A first step is to visualize and
examine the protein using one of the many available graphical viewers that support the
PDB format. Examples include UCSF Chimera, (39)VMD, (40) Discovery Studio
Visualizer, and Maestro. If a co-crystallized ligand is present this provides the location of
the binding site, which is useful information for set up of VM2 calculations of ligand
binding affinities with this target. Visual examination may also indicate obvious
problems such as chain breaks; other more subtle issues may be present such as incorrect
stereochemistry of peptide bonds, which will require the use of interrogation methods
these visualizers have available.

PDB submissions are not designed nor curated with facilitation of molecular modeling as
a goal. As such, no attempts are made to “correct” issues that arise when areas of electron
density cannot be resolved into structure. Therefore, issues such as missing side chains,
no hydrogen atoms, incorrect residue stereochemistry etc. must be explicitly considered
and addressed by the VM2 user. Furthermore, certain user decisions will affect how well
the model will ultimately perform in binding free energy calculations. Example decisions
include how to treat metal centers, which, if any, of the solvent molecules or ions present
in the PDB file to retain in the calculation, what residue protonation states to choose,
which atoms to make mobile and which atoms to include in the calculation but fix in
space (see Section I 1.11), what force field to use, and how to deal with non-standard
protein residues. Further details of potential problems and user decisions now follow. The
graphical viewers mentioned above have tools that can aid users in this process; an
additional non-visual package is PDBFixer.

3.1.1. Missing side chains

If residue side chains are found to be missing they can either be added in their ideal
geometry, or through rotomer libraries, to the system before typing and parameter
assignment. If, however, they are very far away from the binding site or potentially will
not even be present in the real/live set, they can be capped as GLY. The idealized
geometry of any added side chain should be relaxed during the setup process.

3.1.2. Non-standard amino acids

If non-standard amino acid residues are present if parameters exist they should typed and
parameterized accordingly, if parameters do not exist and the residue is far from the
active site it may be simply swapped out for a standard residue. If the residue is close to
the active site it should be typed and charged using a generalized scheme.

3.1.3. Chain breaks

If a chain break occurs near the binding site or in a loop that plays an important role then
the missing residues should be added. As for missing side chains, if the chain break is
very far away from the binding site and likely to be fixed in space or even not present in
the real/live set then the termini of the break can be capped.

http://htmlpreview.github.io/?https://raw.github.com/pandegroup/pdbfixer/master/Manual.html

 53

3.1.4. Hydrogen addition

Most PDB files do not contain hydrogen atoms and they must be added appropriately.
They may be added in idealized positions with idealized bond lengths etc. and relaxed
during the setup process. Note that the PDB standard hydrogen atom-naming scheme is
not identical to the naming scheme used by some preparation and typing tools.

3.1.5. Stereochemistry

Stereochemistry errors that can occasionally occur are cis peptide bond arrangements and
incorrect alpha-carbon parity. It is preferable these issues are detected and fixed during
preparation stage.

3.1.6. Metal centers

If metal centers, e.g. zinc, magnesium, iron, copper, occur far away from the binding site
or even fall outside the ‘real’ set then minimal effort with respect to parameterization is
required as they can be assigned unit charges e.g. Zn2+, Mg2+ and possibly zero force
constant bonds. However, if metal centers are nearby the binding site it is highly
recommended that if parameters have not already been established for the particular
binding motif of the metal, that efforts through electronic structure calculations etc. are
made to assign appropriate charges, and force constants.

3.1.7. Solvent and ions

Protein structures in the PDB often include water with the water oxygen atoms indicating
their positions. Ions can also be present. For VM2 binding affinity calculations the
current recommendation is to remove all ions. With respect to water, the vast majority of
water molecules should always be removed and often all the water molecules are
removed. However, if it is recognized that certain water molecules in the binding pocket
are playing a role in the binding of the co-crystalized ligand then such water molecules
should be included in the VM2 calculation as part of the protein ‘live’ set. Users may
want to utilize 3rd-party software that may algorithmically identify important water
molecules in the binding site.

3.1.8. Specific residue protonation states

These are five ionizable protein residue types: Asp, Glu, His, Tyr, Lys. Their states are
known at standard physiological pH 7.4, but the local pH in a binding pocket can vary
according to the local structure. Also, it is possible that a ligand on binding will induce a
change in the protonation state of binding pocket residues. Users may want to employ 3rd-
party software that attempts to predict protein system protonation states e.g. Propka. (41,
42)

3.1.9. Residue mutations

For studies of the effect of residue mutations on protein-ligand binding affinities during
the protein preparation removal of the current residue and replacement with the mutant
residue is required with the associated atom renumbering etc.

 54

3.1.10. Choice of protein real/live set

The choice of protein atoms to include in the calculation (real atoms) and which of these
should be mobile (live atoms) should be taken with care. Enough protein atoms should be
live so the protein environment can adjust appropriately when the binding ligand is
present. Furthermore, if the system under consideration contains a flexible loop that can
affect the active site, as it the case for kinase systems, this loop should be mobile. Of
course, the larger the real/live set is, the more computationally demanding a VM2 run
will be, so choosing a real/live set that is larger than needed should also be avoided.
Arriving at the correct balance in this regard sometimes requires a trial and error process.

3.1.11. Protein atom typing and parameters

As described in Section II VM2 supports various force fields types: AMBER,
CHARMM, OPLS, and Dreiding. Tools for protein typing and parameter assignment
include AmberTools,(43) UCSF Chimera,(39) VMD,(40) Discovery Studio Visualizer,
OpenMM,(44) and Maestro. Additionally, VeraChem provides a tool for typing and
assigning parameters for proteins. Several web-based tools also exist e.g. CHARMM-
GUI (45) and CHARMMing. (46)

3.2. Host molecules and ligands

Host molecules and especially ligand molecules provide further challenges with respect
to preparation, typing, and parameter assignment, as in contrast to protein systems, where
constituent amino acids are specifically characterized and preparation tools can take
advantage of this pre-knowledge, generalized approaches must be used. Generalized
preparation steps include hydrogen addition, protonation state assignment, bond order
recognition, assignment of stereochemistry, and generalized typing and parameter
assignment.

3.2.1. Hydrogen addition

Often source files do not contain information on hydrogen atoms for host and ligand
molecules, in this case they must be added.

3.2.2. Protonation states

When adding hydrogen atoms, an important consideration is the possible protonation
states as the choice of protonation state can have a large effect on predicted binding
affinities. If pKa values are known for the ligand under consideration (or for a similar
chemical motif) then this may be adequate for good choices. If no pKa values are
available, the use of third-party software for prediction of protonation states can be
considered.

3.2.3. Bond order recognition

 55

It is important to assign correct bond orders as this affects force field parameter
assignment, and in addition the VM2 algorithms make use of bond order information
when performing conformational searches and other procedures.

3.2.4. Stereochemistry

Care should be taken that the stereochemistry of the host and/or ligand molecule prepared
is correct, as the VM2 algorithms will recognize the stereochemistry as supplied, and, if
requested, maintain that stereochemistry throughout the calculation.

3.2.5. General atom typing and parameters

Atom typing and parameterization for general molecules remains a considerable
challenge. There are now available packages for typing and parameter assignment of
general molecules. A commonly used tool is antechamber, distributed with AmberTools,
which can type and assign GAFF parameters for general molecules. The CGenFF
program types and assigns parameters from the CGenFF parameter set.

4. Mandatory formatted molecular data file generation

Once the molecular systems are prepared as described above, the mandatory formatted
molecular data files .crd, .top, and .mol/.sdf must be generated (see Section VI.2.).
Usually the tools employed for the molecular system preparation will provide other
formatted files such as .psf or .prmtop, which must then be converted to the required
formats by VeraChem supplied scripts. There follows outlines of preparation/conversion
routes currently available.

5. System and data file preparation routes

Currently, there are four established routes for molecular system preparation and
subsequent VM2 input data file preparation. Three routes use VeraChem scripts to
convert third-party software produced data files to VeraChem format input files, the
remaining route is through VeraChem’s own preparation and typing tools.

 56

The basic steps for each route are now described. For step-by-step specific examples see
Sections IX – XI.

5.1. Route 1: Conversion of Amber style input files

For protein molecules any preparation and typing software tools that produce the Amber
.prmtop and .inpcrd files are suitable; examples, which will be discussed in more detail
below are AmberTools software, UCSF Chimera, and OpenMM. These Amber formatted
files are used as input for VeraChem’s conversion tool. The following is an example of
usage:

--
$VCPYTHON $VCHOME/exe/prm2top.pyc -prm protein.prmtop -crd protein.inpcrd -
protein >& log.out
--

The .top, .mol, and .crd files required to run VM2 are written out and any warnings
appear in log.out.

For ligands/host molecules if a high quality .mol2 file is already available it can be
immediately used in conjunction with the tools mentioned above, namely AmberTools,
UCSF Chimera, and OpenMM, which can type and assign parameters via Antechamber
and output .prmtop and .inpcrd files for the ligand.

 57

However, if, for example, the user is starting only with a chemical formula and is
sketching a 2-D structure, or is starting with a SMILES string or 2-D .sdf/.mol file, a
reliable conversion to a 3-D structure, with addition of hydrogen atoms, assignment of
bond orders and stereochemistry, and generation of an associated .mol2 formatted file, is
required before proceeding with the .prmtop and .inpcrd file generation.

Software that can be used to sketch 2D structures include …… Software that can read in
SMILES strings and convert to 3D include …. Software that can convert 2D mol/sdf files
to 3D include ….

Once the .prmtop, .inpcrd, and .mol2 files are available as for the protein case they are
used as input for VeraChem’s conversion tool to produce the required .top, .mol, and .crd
files:

--
$VCPYTHON $VCHOME/exe/prm2top.pyc -prm ligand.prmtop -crd ligand.inpcrd -
mol2 ligand.mol2 >& log.out
--

5.1.1. AmberTools

See ambertools test directory for 1ke5... look at the run.sh scripts in each of the
subdirectories.. (also note that the ligand can be in mol format as well, not just pdb as is
the case in the write up).

For proteins:
tleap -s -f protein_leap.in >& log.out

For ligands the sequence is

ligand_antechamber
antechamber -i ligand.mol -fi mdl -o ligand.mol2 -fo mol2 -c bcc -s 2 -df 2 -nc 0 -j 5 -dr
no >& log.out

ligand_parmchk
parmchk -i ligand.mol2 -f mol2 -o frcmod >& log.out

ligand_tleap
tleap -s -f ligand_leap.in >& log.out

Where ligand_leap.in is:

verbosity 1
source leaprc.gaff
mods = loadamberparams frcmod
MOL = loadmol2 <ligand>.mol2
list
saveamberparm MOL <ligand>.prmtop <ligand>.inpcrd

 58

quit

and <ligand> must be replaced with the actual name of the ligand. For example
umass_1_ad_23, ad_81, etc.

The prepareLigands.pyc script automates this process to allow the preparation of an
entire set of ligands contained in a single sdf file. The steps above are executed for each
ligand in the file in order. It is also possible to specify a range of ligands within the sdf to
process. It is important that the ligands in the sdf file have all hydrogens present,
stereochemistry defined with parity values, and correct formal charges. The complete
Protein – ligand example that is included later in this document provides an example of
its use.

5.1.2. UCSF Chimera

The visualization and analysis package UCSF Chimera (39)

5.1.3. OpenMM

The open source toolkit OpenMM (44) ……

5.2. Route 2: Conversion of CHARMM style input files

protein
$VCPYTHON $VCHOME/exe/psf2top.pyc -psf protein.psf -crd protein.sd >& log.out

Ligand
$VCPYTHON $VCHOME/exe/psf2top.pyc -psf ligand.psf -crd ligand.sd >& log.out

5.2.1. Discovery Studio Visualizer

The BIOVIA Discovery Studio Visualizer is a freely available graphical visualization
tool: http://accelrys.com/products/collaborative-science/biovia-discovery-
studio/visualization.html. Discovery Studio Visualizer (DSV) supports the import and
export of common molecular data file formats e.g. PDB, crd, mol2, sdf etc., and it also
provides tools for building and manipulating small molecules and macromolecules. DSV
provides a convenient path for building/loading/editing molecules and outputting data
files that can then be read by VeraChem’s conversion scripts, which then output the
required input files to run VM2 calculations.

The following provides a brief step-by-step description of how to generate VM2 input
data files using the DSV pathway.

Step 1: Import or use DSV to build your target molecular system e.g. small molecule or
protein.

Step 2: Use DSV to visualize and edit your molecular system as required e.g. correct
bond orders, add missing side-chains etc.

http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html

 59

Step 3: For small molecules, e.g. ligands and/or host molecules, if required, refine the
structure using the Clean Geometry option in DSV under the Structure top menu item.

Step 4: Under the Tools top menu item select Simulation and then in the resulting sub-
menu select Change Forcefield. This will bring up the following force field options in
the far left panel: Forcefield, Forcefield Status, and Forcefield Customization. Under
the Forcefield option select a CHARMm or charmm option and then press the Apply
Forcefield button. The Forcefield Status should then be indicated as typed.

Step5: Save the required formatted files: .crd, .psf, .sd, and .mol2. To do this, go to the
File top menu item, select the option Save As, and then select CHARMm Simulation
Files as the Save as Type. The extension you provide will determine format of the file;
i.e., if you specify 1hvr.crd it will output a crd file, and if you specify 1hvr.psf, a psf will
be written even though the Save as Type remains the same.

Step 6: Check the .sd file to make sure that it contains a ffml data block. If no parameters
had to be estimated it will be empty, e.g.

> <ForcefieldFFML>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ffml SYSTEM "Ffml.dtd">
<ffml version="1.0">
<forcefield name="1HVR-CHARMm" derivedFrom="CHARMm" base="CHARMm">
<atomTypes>
</atomTypes>
<parameters>
</parameters>
</forcefield>
</ffml>

$$$$

If there are estimated parameters they will appear as in the following example:

> <ForcefieldFFML>
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ffml SYSTEM "Ffml.dtd">
<ffml version="1.0">
<forcefield name="1HVR-CHARMm" derivedFrom="CHARMm" base="CHARMm">
<atomTypes>
</atomTypes>
<parameters>
<bond atom1="SO1" atom2="OT">
<quadratic
 refValue="1.55"

 60

 forceConstant="220"/>
</bond>
<angle atom1="CT" atom2="SO1" atom3="OT">
<quadratic
 refValue="107"
 forceConstant="66"/>
</angle>
<angle atom1="SO1" atom2="OT" atom3="HO">
<quadratic
 refValue="109.147"
 forceConstant="51.3667"/>
</angle>
<torsion atom1="CT" atom2="SO1" atom3="OT" atom4="HO">
<multiplecos
 v1="0"
 v2="0"
 v3="0.2"
 v4="0"
 v5="0"
 v6="0"
 gamma1="0"
 gamma2="0"
 gamma3="0"
 gamma4="0"
 gamma5="0"
 gamma6="0"/>
</torsion>
</parameters>
</forcefield>
</ffml>

$$$$

If this block is not present save an ffml file with the information directly by selecting the
More option under Forcefield Status in the far left panel.

Step 7: Conversion to VM2 input files via VeraChem scripts. First, the environment
variable VCDSPATH must be set to the location of the CHARMm forcefield files from
your installation of Discovery Studio Visualizer. (For the 2016 version on the PC this is
DiscoveryStudio_2016/share/forcefield/CHARMm.) Then invoke the conversion scripts
as follows:

Ligand
$VCPYTHON $VCHOME/exe/psf2top.pyc -psf ligand.psf -crd ligand.sd >& log.out

protein
$VCPYTHON $VCHOME/exe/psf2top.pyc -psf protein.psf -crd protein.sd >& log.out

 61

The seven step process just described will produce the .crd, .top, and .mol files required
to run VM2 calculations.

5.2.2. CHARMMing

The CHARMMing website interface …

5.2.3. CHARMM-GUI

An alternative web-based tool is the CHARMM-GUI …

5.3. Route 3: Maestro/Macromodel (OPLS2005)

VeraChem provides a python script that parses a Schrodinger Inc. formatted .mmo data
file and outputs the .crd, .top, and .mol/.sdf files required to run VM2 calculations.

Access to the 3rd-party software Maestro and Macromodel is required. The Maestro
graphical user interface is used to prepare molecules e.g. hydrogen addition etc. and
MacroModel is required for the final generation of an .mmo file for conversion.

5.3.1. System Preparation and Generation of MMO files

 (1) From the Maestro tool bar, select Workflows -> Protein Preparation Wizard.
 In the wizard:
 Load structure to workspace;
 Use all default values for ligands; for protein, select "Cap termini";
 Click "Preprocess";
 On Page "Review and Modify", delete unwanted waters and Hets from the
 lists for proteins.

(2) From the tool bar, select Application -> MacroModel -> Current Energy
 On page "Potential":
 Select force field as OPLS2005;
 Set solvent to "none";
 Set cutoff to "none" for ligands and to "normal" for proteins;
 On page "Ecalc":
 Set energy list to "complete";
 Click "Start", give a name for the MMO file to output.

5.3.2. Conversion of MMO files to .crd, .top, and .mol/.sdf

Then you would run

$VCPYTHON $VCHOME/exe/mmo2top.pyc ligand.mmo >& log.out

$VCPYTHON $VCHOME/exe/mmo2top.pyc protein.mmo >& log.out

To generate the crd, top, and 'mol' files

 62

5.4. VeraChem preparation tools

VeraChem supplies its own for PDB/CIF file parsing, protein preparation, protein atom
typing and parameter assignment, and .crd, .top, and .mol file generation.

 63

VI. Running VM2 calculations

To run VM2 package calculations an input file (.inp), which sets calculation options,
three molecular/force field data files (.crd, .top, .mol/.sdf), and a run script are always
required. Additional data files may be required depending on the chosen molecular
system type as well as other specific user choices. The following provides a summary of
basic requirements, which are covered in more detail further below.

All files are, except where explicitly stated, ASCII text files. A description of their roles
and content now follows.

1. Mandatory input file (.inp)

The mandatory input file must have the .inp suffix. It contains keywords and associated
options that control the calculation. The following is a very simple example for a ligand
VM2 calculation that uses only program defaults. The only keywords/options shown are
those user is required to supply. The hash sign ‘#’ tells the parser not to read that
particular line. It can be used to add comments, but is also required at the transition
between keywords. See Section VIII for a full list of input keywords/options and
example usage.

molSystemType
ligand

calcnType
vm2

inputLigand

 64

1
~/path/ligand_name.crd
~/path/ligand_name.top
~/path/ligand_name.mol

end

The following is a screen shot of a more complex .inp file for a protein-ligand VM2
calculation.

2. Mandatory data files

The three mandatory data files .crd, .top, .mol supply molecular data and force field data
to the program.

 65

2.1. .crd file

This is the standard CHARMM format card file. See the following link for format details

 https://www.charmm.org/charmm/documentation/by-version/c40b1/params/doc/io/#Top

It is used to supply VM2 the initial molecular geometry, residue names and IDs, and
IUPAC protein atom names. (47) For host and ligand molecules reasonable atom names
are sufficient.

2.2. .top file

This is a VeraChem formatted file. This file provides atomic masses, atomic partial
charges, the Lennard-Jones parameters rmin and ε. Additionally, it defines the molecule’s
topology (bonds, angles, proper and improper dihedrals) and provides the associated
force constant parameters. See section II for the .top file format specification and Section
XII for a specific example.

2.3. .mol/.sdf file

This is a standard and widely used format originally developed at Molecular Design
Limited. (48) This file provides atom parities, bond orders, and stereochemistry to the
VM2 package. This information use in VM2 includes determination and maintenance of
stereochemistry, reduction of torsional search space, and correct output of other
descriptive molecular formats.

3. Optional data files

3.1 Formatted file defining atoms/points in space used for automatic generation of
protein real/live sets

The user supplies a formatted file that defines atoms or points in space – these
atoms/points are usually within the protein binding pocket, and could, for example,
represent the co-crystalized ligand. In the .inp file, the user also supplies cutoff distances
relative to these atom positions/points in space that are used to determine which atoms
are in the real/live atom regions. The software outputs an associated formatted text file
(see 3.2 below) that defines these regions, which can then be read in for any subsequent
calculations so importantly the exact same real/live protein atom set can reproduced for a
series of protein-ligand complexes. Allowed formats are .crd, .xyz, .sdf, .mol, .pdb, and
Macromodel .dat.

3.2. Formatted text file that explicitly defines fixed and mobile atoms

The user can generate this VeraChem formatted file or can use one programmatically
generated - see 3.1 above. An example name could be

real_live_atoms.txt

https://www.charmm.org/charmm/documentation/by-version/c40b1/params/doc/io/#Top

 66

See section XII 2. for the “real_live_atoms.txt” file format specification.

3.3. Formatted file containing atoms to be constrained

A VeraChem formatted file that lists atoms that will have energy constraints applied to
them. An example name could be

 constrained_atoms.txt

See section XII 3. for the “constrained_atoms.txt” file format specification.

3.4. Formatted file containing atoms to be excluded from conformational searches

A file that lists atoms that if found in a mode based search driver cause that driver to
excluded from the set used in the Vconf conformational search procedures. An example
name could be

 excluded_driver_atoms.txt

See section XII 4. for the “excluded_atoms.txt” file format specification.

3.5. Standard format files containing coordinates of previously generated molecular
conformers

The standard formatted file types .xyz, .sdf, .mol, Macromodel .dat, and .crd containing
previously generated conformers may be read in to provide a starting point for a new
calculation.

3.5.1 Ability to read in multiple conformers to initiate runs

As described earlier, the VM2 algorithm relies on the generation of low energy
conformers of the molecular system. Determining the lowest energy conformations of a
system can sometimes require a multistep process. To this end, VM2 has the capability to
read in sets of conformers via formatted text files, so conformers from previous VM2
runs, or indeed conformers generated by third-party software, can be used to initiate new
runs. These conformers can, if desired, be simply processed to provide a free energy
value or may serve as a starting point for a full VM2 iterative calculation.

For protein-ligand molecular systems, the user can choose to read in only ligand or only
protein conformers, and the software will construct protein-ligand conformations, by
pairing with the basic set up protein and each ligand structure, respectively.

An example use of this is for congeneric series of ligands where the ligand scaffold
position in the active site is known and is kept fixed in position, conformers are then
generated that sample different R-group positions.

 67

Confgen figure here …

These separately generated ligand conformations are then read in for generation of
protein-ligand starting conformations, speeding up the search for low energy protein-
ligand conformations.

Another example is the case where nothing is known about a ligand pose in the binding
site. In this case, a conformer generation setting can be used to generate ~ 20 ligand
conformers, which sample R-group positions, and then randomly rotate these conformers
about their center of geometry to provide an ensemble of 1000 conformers that can be
used to generate protein-ligand starting conformations for a VM2 run.

Confgen4 figure here …

4. Environment variables

4.1. Placeholder

4.2. Placeholder

 68

4.3. Placeholder

4.4. Placeholder

5. Run scripts

Example shell scripts for running VM2 calculations are presented below. In addition, as
most computer clusters, whether at pharmaceutical companies, universities, or
government laboratories require that calculations be submitted via a batch queue system,
we also provide examples for common batch queue run scripts: Portable Batch System
(PBS), Simple Linux Utility for Resource Management (SLURM), and Platform Load
Sharing Facility (LSF).

The run script examples assume the environment variable VCHOME is set elsewhere;
other required environment variables are set in the scripts. For example, the
OMP_NUM_THREADS, MKL_NUM_THREADS and I_MPI_PIN_DOMAIN
environment variables are always set in the MPI and mixed MPI/OpenMP examples
below. For runs with the purely serial VM2 executable, these variables would not be
required. The required environment variables can also be set in the user’s .bashrc or
.cshrc file if preferred.

5.1. Bash shell scripts

To submit a calculation, where the bash script is called my_bash_script.bsh, issue the
command

 ./my_bash_script.bsh >& my_bash_script.log &

5.1.1. Example 8 MPI process run
--
#!/bin/bash

Bash-shell script

ulimit -s unlimited

Set locations and environment for Intel
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS
export LD_LIBRARY_PATH

 69

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

Will run 8 MPI processes
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.1.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process
--
#!/bin/bash

Bash-shell script

ulimit -s unlimited

Designed to run on a node equipped with dual xeon 8 core processors
and 4 K80 Tesla cards (8 GPUs)

Set locations and environment for Intel and CUDA libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=2
export MKL_NUM_THREADS=2
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

 70

Will run 8 MPI processes and 2 OpenMP threads per process.
Also uses 8 GPUS.
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE

--

5.2. C-shell scripts

The following are the C-shell equivalents of the bash scripts in 5.1. above. To submit a
calculation, where the C-shell script is called my_csh_script.csh, issue the command

 ./my_csh_script.csh >& my_csh_script.log &

5.2.1. Example 8 MPI process run using C-shell
--
#!/bin/csh

C-shell script

limit stacksize unlimited

Set locations and environment for Intel
setenv INTEL_LIBS $VCHOME/lib/intel
setenv INTEL_MKL_LIBS $INTEL_LIBS/mkl
setenv INTEL_MPI_LIBS $INTEL_LIBS/mpi

LD_LIBRARY_PATH=$INTEL_LIBS\:$INTEL_MKL_LIBS\:$INTEL_MPI_LIBS
setenv LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS\:$PATH
setenv PATH

setenv OMP_NUM_THREADS 1
setenv MKL_NUM_THREADS 1
setenv I_MPI_PIN_DOMAIN omp
setenv KMP_STACKSIZE 16m

Set VM2 executable to use
set VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe

Set VM2 input and output file names
set VC_IN_FILE=protein_ligand_vm2.inp
set VC_OUT_FILE=protein_ligand_vm2.out

Will run 8 MPI processes
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.2.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using C-shell
--
#!/bin/csh

 71

C-shell script

limit stacksize unlimited

Designed to run on a node equipped with dual xeon 8 core processors
and 4 K80 Tesla cards (8 GPUs)

Set locations and environment for Intel and CUDA libraries
setenv INTEL_LIBS $VCHOME/lib/intel
setenv INTEL_MKL_LIBS $INTEL_LIBS/mkl
setenv INTEL_MPI_LIBS $INTEL_LIBS/mpi

CUDA_LIBS=$VCHOME/lib/cuda\:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS\:$INTEL_MKL_LIBS\:$INTEL_MPI_LIBS\
:$CUDA_LIBS
setenv LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS\:$PATH
setenv PATH

Set number of OpenMP threads to run per MPI process
setenv OMP_NUM_THREADS 2
setenv MKL_NUM_THREADS 2
setenv I_MPI_PIN_DOMAIN omp
setenv KMP_STACKSIZE 16m

Set VM2 executable to use
set VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe

Set VM2 input and output file names
set VC_IN_FILE=protein_ligand_vm2.inp
set VC_OUT_FILE=protein_ligand_vm2.out

Will run 8 MPI processes and 2 OpenMP threads per process.
Also uses 8 GPUS.
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE

--

5.3. PBS batch queue scripts

The following are PBS batch queue scripts initiate the equivalent runs to those the bash
scripts in 5.1. initiate. To submit a calculation, where the PBS script is called
my_pbs_script.pbs, issue the command

 qsub my_pbs_script.pbs

5.3.1. Example 8 MPI process PBS run
--
#!/bin/bash
#PBS -q default
#PBS -N test
#PBS -l nodes=1:ppn=8
#PBS -o test.out

 72

#PBS -e test.err

ulimit -s unlimited

Set location and environment for Intel libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

cd $PBS_O_WORKDIR

Will run a total of 8 MPI processes on a single node
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.3.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using PBS
--
#!/bin/bash
Modify to match local setup
This script has not been tested
#PBS -q default
#PBS -N test
#PBS -l nodes=1:ppn=16
#PBS -o test.out
#PBS -e test.err

ulimit -s unlimited

Designed to run on a node equipped with dual xeon 8 core processors
and 4 K80 Tesla cards (8 GPUs)

Set location and environment for Intel and CUDA libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

 73

CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=2
export MKL_NUM_THREADS=2
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

cd $PBS_O_WORKDIR

Runs 8 MPI processes with 2 OpenMP threads per processes.
Also uses 8 GPUs, all on a single node.
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE

--

5.4. SLURM batch queue scripts

Below are SLURM batch queue scripts equivalent to the PBS scripts in 5.3. above. To
submit a calculation, where the SLURM script is called my_slurm_script.sh, issue the
command

 sbatch my_slurm_script.sh

5.4.1. Example 8 MPI process SLURM run
--
#!/bin/bash
Modify to match local setup
This script has not been tested
#SBATCH --partition=default
#SBATCH --job-name=test
#SBATCH --ntasks=8
#SBATCH --ntasks-per-node=8
#SBATCH --output=test.out
#SBATCH --error=test.err
#SBATCH --export=NONE

ulimit -s unlimited

Set location and environment for Intel libraries
INTEL_LIBS=$VCHOME/lib/intel

 74

INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

cd $PBS_O_WORKDIR

Will run a total of 8 MPI processes on a single node
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.4.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using SLURM
--
#!/bin/bash
Modify to match local setup
This script has not been tested
#SBATCH --partition=default
#SBATCH --job-name=test
#SBATCH --ntasks=16
#SBATCH --ntasks-per-node=16
#SBATCH --output=test.out
#SBATCH --error=test.err
#SBATCH --export=NONE

ulimit -s unlimited

Designed to run on a node equipped with dual xeon 8 core processors
and 4 K80 Tesla cards (8 GPUs)

Set location and environment for Intel and CUDA libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH

 75

export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=2
export MKL_NUM_THREADS=2
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

Runs 8 MPI processes with 2 OpenMP threads per processes.
Also uses 8 GPUs, all on a single node.
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.5. LSF batch queue scripts

Below are LSF batch queue scripts equivalent to the PBS scripts in 5.3. above. To submit
a calculation, where the LSF script is called my_lsf_script.sh, issue the command

 bsub < my_lsf_script.sh

5.5.1. Example 8 MPI process LSF run
--
#!/bin/bash

LSF batch script to run an MPI application

#BSUB -P project_code # project code
#BSUB -W 48:00 # wall-clock time (hrs:mins)
#BSUB -n 8 # number of tasks in job
#BSUB -R "span[ptile=1]" # run 8 MPI tasks per node
#BSUB -J job_name # job name
#BSUB -o job_name.%J.out # output file name in which %J is replaced
by the job ID
#BSUB -e job_name.%J.err # error file name in which %J is replaced
by the job ID
#BSUB -q queue_name # queue

ulimit -s unlimited

Set location and environment for Intel libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

 76

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

Will run a total of 8 MPI processes on a single node
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

5.5.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per
MPI process, using LSF
--
#!/bin/bash

#BSUB -a poe # set parallel operating environment
#BSUB -P project_code # project code
#BSUB -J hybrid_job_name # job name
#BSUB -W 48:00 # wall-clock time (hrs:mins)
#BSUB -n 16 # number of tasks in job
#BSUB -R "span[ptile=8]" # run eight MPI tasks per node
#BSUB -q regular # queue
#BSUB -e errors.%J.hybrid # error file name in which %J is replaced
by the job ID
#BSUB -o output.%J.hybrid # output file name in which %J is
replaced by the job ID

ulimit -s unlimited

Designed to run on a node equipped with dual xeon 8 core processors
and 4 K80 Tesla cards (8 GPUs)

Set location and environment for Intel and CUDA libraries
INTEL_LIBS=$VCHOME/lib/intel
INTEL_MKL_LIBS=$INTEL_LIBS/mkl
INTEL_MPI_LIBS=$INTEL_LIBS/mpi

CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma

LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS
export LD_LIBRARY_PATH

PATH=$INTEL_MPI_LIBS:$PATH
export PATH

Set number of OpenMP threads to run per MPI process
export OMP_NUM_THREADS=2
export MKL_NUM_THREADS=2
export I_MPI_PIN_DOMAIN=omp
export KMP_STACKSIZE=16m

 77

export MP_TASK_AFFINITY=core:$OMP_NUM_THREADS

Set VM2 executable to use
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe

Set VM2 input and output file names
VC_IN_FILE=protein_ligand_vm2.inp
VC_OUT_FILE=protein_ligand_vm2.out

Runs 8 MPI processes with 2 OpenMP threads per processes.
Also uses 8 GPUs, all on a single node.
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE
--

6. CloudVM2 – running VM2 on Amazon Web Services (AWS) cloud environment

CloudVM2 has three main components: a GUI front-end program which can be installed
on the user's machine or in the AWS cloud, a private cloud network with firewall on the
AWS platform, and compute nodes running VM2 calculations. The front-end program
starts the private cloud network and the compute nodes and then distributes calculations
to them.

6.1. Outline of CloudVM2 operation

The user will have already selected a receptor (e.g. protein or host molecule) and one or
possibly a whole series of ligands for which they need to calculate the binding free
energy. They will run the CloudVM2 front-end program, which will then contact the
Amazon Web Services cloud, and create a firewalled private cloud. The program will
then temporarily transmit the data files to Amazon’s S3 data service. Once data has been
uploaded the GUI will start a compute node for each receptor, ligand, and each receptor-
ligand pair. Once the node is operational it will download the appropriate data files and
delete them from temporary storage. The node will then start the calculations. Upon
completion of the calculations, the node uploads the results back to S3 and is then
terminated, stopping costs accruing for that node. The user can then download the results
at their leisure via the GUI.

6.2. Architecture and economics

 78

CloudVM2 can take advantage of Amazon’s ‘spot instances’, which represent spare
capacity on the AWS cloud that is sold to the highest bidder. The spot instances achieve
an average savings of 75% (summer 2017) compared to normal ‘on-demand’ instances,
the drawback to this is that AWS reserves the right to terminate a spot instance with 2
minutes warning, so that they may sell it to another customer who is willing to pay the
full retail price. The CloudVM2 architecture is built to accommodate this with minimal
loss of efficiency. CloudVM2 continually monitors the running instance for the
termination signal, and when received it uploads the last calculation checkpoint file to
fast local storage (S3) so that the calculation can be restarted. Automatic calculation
restarts are planned for the next release of CloudVM2.

Amazon Web Services is built on a worldwide infrastructure, with 15 major datacenters
(increasing rapidly), each of which is divided into two or more ‘Availability Zones’. Each
datacenter and each zone have different spot prices for each instance type, and these
prices fluctuate continuously. CloudVM2 is aware of Amazon’s worldwide
infrastructure, and scans all datacenters and all zones for current and historic spot prices,
and will then launch computations in the datacenter and zone with the most economical
predicted total cost. Data storage for each calculation is also located in the same
datacenter for the quickest and most economical operation.

6.3. CloudVM2 GUI

The CloudVM2 GUI can be run locally on a system with Python 2.7 installed, or it can be
hosted on a small, low cost instance in the AWS cloud. The CloudVM2 GUI has three
main functions: start a series of calculations, check status of compute nodes, and retrieve
results.

6.3.1. Main Menu

The opening screen in CloudVM2 displays some helpful information and the main menu.
Other than help info, no functionality is accessible from this screen. Depending upon the

 79

user’s platform and terminal emulation application, CloudVM2 menu selections and
entries can be accessed by ‘hotkeys’ (single letter shortcuts), mouse clicks, or arrow
buttons. Not all terminal programs support all methods, but at the very least the ‘hotkeys’
should work.

6.3.2. Start Menu

The start menu allows the user to launch a VM2 calculation series on AWS. The user
must supply the path to the top-level directory of their series, relative to the user’s home
directory. The user must also select a name for the series, and what size of node to run
each calculation on.

After selecting <(L) Launch>, CloudVM2 will download price data from AWS (this may
take a couple minutes) and then start launching computational nodes sequentially.
Information on the status of the launch will scroll down in the right hand data column.

 80

6.3.3. Check Menu

The check menu shows the user the current state of that user’s calculation nodes.
Functionality to shutdown nodes launched in error will be included in the next release of
CloudVM2.

6.3.4. Retrieve Menu

 81

The Results menu allows a user to inspect, download, and delete the results of their
calculation series. After selecting a collection with the mouse, space, or enter keys, the
user may select <View> to see the contents of the collection. From there the user may

download the collection or delete it.

 82

7. Front end workflow

7.1. General scheme for ligand series and receptor binding

7.2. Local clusters

7.3. CloudVM2

 83

VII. VM2 output files

The VM2 method produces a wealth of information regarding the chemical system under
study. In addition to the free energy G (Boltzmann averaged over all conformers), and its
constituent energy <E> and entropic terms –TS, it provides a breakdown of <E> into
internal potential energy <U> and solvation energy <W> terms, with <U> further broken
down into molecular mechanics terms (bond, angle, torsion, vdW, and nonbonded
energies). Furthermore, values for each individual conformer are available as well as
molecular coordinates.

1. VeraChem standard output files

1.1. Verbose output file (.out)

 Contains detailed description of all steps of the calculation.

 84

1.2. Summary output file (.summary.out)

Contains a basic summary of the run, including energy tables.

1.3. Binary restart file (.vcbin)

At the conclusion of each VM2 iteration a binary restart file is written out to disk.

Occasional crashes or downtime for maintenance can unexpectedly interrupt running
calculations and waste large compute resources already devoted to a particular run. In
addition, sometimes a run may not converge within the default maximum iterations and
will need to be restarted at the last iteration carried out. To handle these fairly common
situations, during Phase II we implemented a binary file restart capability for the parallel
VM2 software. For each VM2 iteration a binary file is updated with energy and
molecular coordinate data. If a run unexpectedly stops the binary file can be read in and

 85

the calculation restarted at the last performed VM2 iteration. If a run does not converge
the binary file may be read in and additional iterations requested; again the calculation
starts at the last performed iteration in the original run.

An option to read in a binary file from a VM2 run (either incomplete or complete) and
output the users choice of formatted text data files (see previous sections) was also
implemented.

2. Formatted output files

In order that users can explore this data conveniently using the many available (free and
commercial) molecular visualization packages, we have continued to expand the range of
formatted output files our VM2 software can output.

2.1. Structural data

.xyz Standard cartesian coordinate file
.pdb Protein Data Bank format
.crd Standard CHARMM card format
.dat Macromodel Structure File format
.sdf Structure Data File format
.mol2 Tripos molecular data file format
.gms Template GAMESS input file for each conformer
.g09 Template GAUSSIAN09 input file for each conformer

The .mol2 and .sdf formats include data for molecular visualization as well as energy
data. For example, a .mol2 file read into the freely available Discovery Studio Visualizer
provides a way to look at a set of VM2 generated conformers as well as their energy
breakdowns:

 86

Here an .sdf file for a ligand VM2 run has been read into Discovery Studio Visualizer

2.2. Energy data

.csv Comma separated values file containing calculated energy data

 87

3. Back end workflow

3.1. Generation of binding affinity tables

3.2. Placeholder

 88

VIII. Input file run options reference

===

VeraChem Computational Chemistry Package Input Options.

Sections are as follows:

1. Choice of system type and calculation type and other top-level control.
2. Molecular system definition options for protein macromolecules.
3. Molecular system definition options for host molecules e.g. cyclodextrins.
4. Molecular system definition options for ligand molecules.
5. Math related options e.g. control of random seed generation.
6. VeraChem mining minima (VM2) calculation options.
7. General conformational search control options.
8. Custom conformational search options.
9. Options and control of spatial boundary based conformer rejection.
10. Options for free energy processing of conformers.
11. Stereochemistry checking and enforcement control.
12. Control of filtering out conformer repeats.
13. Options for molecular alignment and RMSD calculation.
14. Geometry optimization options and control, including constraints.
15. Molecular mechanics potential energy calculation: methods and usage control.
16. Generalized Born (GB) solvation model control.
17. Constant dielectric (CD) solvation model control.
18. Distance dependent (DD) dielectric solvation model control.
19. Poisson Boltzmann Surface Area (PBSA) solvation model control.

===

 89

===

1. Choice of System Type and Calculation Type and Other Top Level Control.

molSystemType

 Choose the type of molecular system. There is no default; this option must be
 given. See below for additional input required dependent on this choice.

 ‘protein’ Protein receptor calculation (could include explicit water,
 ions, etc.). Part of the system must be fixed in space (see
 Section 2).

 ‘host’ Host molecule calculation. These should be ‘small’
 receptor systems of a few hundred atoms or less e.g.
 cyclodextrins.

 ‘ligand’ Ligand calculation; for example, a ‘drug like’ small
 molecule.

 ‘protein+ligand’ Protein-ligand complex.

 ‘host+ligand’ Host-guest complex.

calcnType

 Choose type of calculation to be carried out. There is no default; this option must
 be given. All calculation types can be initiated with one or multiple input
 conformers.

 ‘vm2’ VeraChem Second-generation mining minima (VM2)
 free energy calculation.

 ‘feprocess’ Free energy processing of one or multiple conformers
 supplied by the user.

 ‘confsearch’ Conformational search (potential energy only).

 ‘rmsd’ Structural comparison of read-in conformers.

 ‘filter’ Filter out repeats contained in read-in conformers.

 ‘geomopt’ Geometry optimization.

‘geomoptHatoms’ Optimize positions of just hydrogen atoms. Only allowed
for molSystemType ‘protein’ and ‘protein+ligand’.

 ‘energy+grad’ Single-point energy and gradient.

 90

 ‘energy’ Single-point energy.

timeLimit

Time limit for calculations given in wall clock hours. Currently only relevant for
calcnType ‘vm2’. The program terminates cleanly and outputs all data files when
the limit is projected to be reached in the next phase of a calculation. The default
is 96.0 hours.

readInConfs

Optionally read in molecular conformations (one or more) from a text file or
multiple text files to initiate a calculation. The text file formats may be .xyz, .sdf,
Macromodel .dat, or .crd. This option may be used, for example, to read in a
previously generated ensemble of ligand conformations to generate initial protein-
ligand conformations, or simply to read in previously generated ensemble of
protein-ligand conformations. If this option is not used a single starting
conformation is taken from the input .crd coordinates – see Sections 2-4.

The readInConfs option may be given up to a maximum of three times, providing
multiple types of conformer ensembles. For each instance of readInConfs multiple
conformer source files may be read in. The program automatically makes
appropriate combinations of conformer types read-in. For example, if
molSystemType is ‘protein+ligand’ and if ‘complex’, ‘protein’, and ‘ligand’
conformer ensembles are read-in, the ‘complex’ conformers are taken as is and all
unique combinations of the ‘protein’ and ‘ligand’ ensembles make additional
‘protein+ligand’ start conformers. The maximum number of start conformations is
1000. The program makes sensible truncations if the conformer files provided
result in more.

 ‘complex’ Formatted file(s) containing protein-ligand or host-guest
 conformers.

 ‘protein’ Formatted file(s) containing only protein conformers.

 ‘host’ Formatted file(s) containing only host molecule
 conformers.

 ‘ligand’ Formatted file(s) containing only ligand conformers.

ligandConfsToCrd

 Only relevant when using the readInConfs option to read in ‘ligand’ conformers.
 Controls how, if at all, read-in ligand conformers are superimposed on the ligand
 input .crd coordinates. (Note that the input .crd coordinates themselves can be
 moved prior to this by superimposition on template coordinates – see Section 4.)

 91

‘no’ Use the coordinates of the ligand conformers as read-in.
This is the default.

‘byConf1COG’ Translate the center of geometry (COG) of the first ligand

conformer read-in to the COG of the ligand .crd. Apply the
same translation to all subsequent ligand conformers read-
in.

‘byConfsCOG’ Translate the COG of each ligand conformer read-in to the

COG of the ligand .crd.

‘byConf1All’ Carry out a rotation/translation superposition of all heavy

atoms (non hydrogens) of the first ligand conformer read-in
on the corresponding ligand .crd atom positions. Apply the
same rotation/translation to all subsequent ligand
conformers read-in.

‘byConfsAll’ Carry out a rotation/translation superposition of all heavy

atoms (non hydrogens) of the each ligand conformer read-
in on the corresponding ligand .crd atom positions.

‘byConf1PairsMap’ Carry out a rotation/translation superposition of the first

ligand conformer read-in with the ligand .crd coordinates
using the atom indexes provided on the very next line.
Apply the same rotation/translation to all subsequent ligand
conformers read-in e.g.

 byConf1PairsMap
 3 5 18 21 22 23

‘byConfPairsMap’ Carry out a rotation/translation superposition of each ligand

conformer read-in with the ligand .crd coordinates using
the atom indexes provided on the very next line e.g.

 byConfsPairsMap
 3 5 18 21 22 23

useCrdAsTemplate

Only relevant when using the readInConfs option to read in ‘complex’ conformers
plus another type of conformer (e.g. ‘protein’, ‘host’, or ‘ligand’) and
molSystemType is protein+ligand or host+ligand (i.e. a complex). Controls
whether to use the .crd input coordinates (see Sections 2-4) as a template for
generation of complex conformers (‘yes’) or whether to use the coordinates of the
first ‘complex’ conformer read-in as a template (‘no’).

 ‘yes’

 ‘no’ This is the default.

 92

useCrdAsConf

Only relevant when using the readInConfs option. Controls whether to use the
.crd input coordinates (see Sections 2-4) as a starting conformation in addition to
the ones generated through readInConfs. Note that if readInConfs option is not
used the .crd coordinates are always used to define a single starting conformation.

 ‘yes’ This is the default.

 ‘no’

outputFormats

 Choose any number of the following file formats. Currently .xyz and .pdb
 formats are always output in addition to those chosen. Place one per line directly
 following the keyword with no blank lines.

 ‘sdf’ A structure-data file (SDfile) with standard V2000 or
 V3000 molfile formatting.

 ‘mol2’ Tripos mol2 file.

 ‘dat’ Macromodel data file.

 ‘csv’ Comma-separated-values file containing energy data.

 ‘gms’ Basic template input files for the GAMESS electronic
 structure software package.

 ‘g09’ Basic template input files for the Gaussian09 software
 package.

fullEnergyBreakdown

 Requests that for output of .sdf and .csv files a full breakdown of the energy into
 constituent terms is written out. If ‘no’ is selected a limited number of constituent
 energy terms are output.

 ‘yes’ This is the default.

 ‘no’

splitOutputFormats

 93

Mostly relevant for molSystemType ‘protein+ligand’ and ‘host+ligand’. The
same as outputFormats above, but a separate formatted file is output for each of
the molecules comprising the complex. Currently .crd files are always output in
addition to those chosen, even for non-complexes. The base-name for the split
output files is taken from the input .crd file names; a descriptor is added based on
the calculation type e.g. xxxxx.vm2.sdf, xxxxx.vm2_rank1.crd. Place one output
format type per line directly following the keyword with no blank lines.

 ‘sdf’ A structure-data file (SDfile) with standard V2000 or
 V3000 molfile formatting.

 ‘xyz’ Standard xyz file format.

limitConfsToOutput

The way that the number of conformers written to the formatted output files is
limited can be chosen using this keyword.

‘byCount’ The user sets the maximum number of conformers to be

output. Follow this line directly with an integer. This is the
default with a maximum number of conformers set as
1000.

‘byPopulation’ The user sets the maximum cumulative conformer

population that limits the number of conformers output.
Follow this line with a percentage value e.g. 99.9. Note that
this option only makes sense for calcnType’s ‘vm2’ and
‘feprocess’.

atomsToOutput

 This is relevant for systems that include proteins as not all the atoms are required
 to be present in calculations, and not all atoms present are mobile.

 ‘all’ All atoms are included in the formatted output. This is the
 default.

 ‘real’ Only ‘real’ atoms are included in the formatted output.
 (Real atoms are those atoms that are included in the energy
 calculation; however, they are not necessarily free to
 move.)

 ‘live’ Only live (flexible) atoms are included in the formatted
 output.

 94

binaryFileRestart

 Restart a calculation from a VeraChem binary data file. The binary file has the
 suffix .vcbin. The program expects the base name of the binary restart file to have
 the same base name of the .inp file.

 ‘crashed’ Use when calculation quits unexpectedly. This option is
 currently only available for calcnType ‘vm2’.

 ‘extendRun’ Use for carrying out additional iterations of a calculation
 that finished, but, for example, did not converge. This
 option is currently only available for calcnType ‘vm2’.

 ‘reprocess’ Uses the conformations produced from a prior run as a
 starting point, but reprocesses them for energies, carrying
 out a geometry optimizations as necessary, and proceeds
 with the requested calculation. The user can change the
 energy potential (e.g. different solvation model) from the
 original run if desired. This option is currently only
 available for calcnType ‘vm2’.

‘textOutput’ Read a VeraChem binary data file and output the data as
formatted text files (see outputFormats above.) This option
is currently only available for calcnType ‘vm2’.

Example usage 1
--

molSystemType
protein+ligand

calcnType
vm2

timeLimit
48.0

readInConfs
ligand
ligand_confs.xyz

outputFormats
sdf
csv

limitConfsToOutput
byPopulation
99.9

 95

--

===

2. Molecular System Definition Options for Protein Macromolecules

Relevant for molsystemType ‘protein’ and ‘protein+ligand’.

inputProtein Names of input files containing protein system data and

real/live set definition related data. They are mandatory and
must be given in order with no blank lines.

 1 Signifies protein molecule one. A single protein
 molecule is the current limit.

 ~/path/protein_name.crd Starting coordinates, atom names, residue names
 etc. Files must conform to standard .crd format
 (regular or extended).

~/path/protein_name.top Topology and molecular mechanics parameters. See
Section XII for format specification.

 ~/path/protein_name.mol Provides protein molecule bond orders and
 stereocenter information. File must be standard
 V2000 or V3000 mol format.

setChainIds If present controls relabeling of protein chain and residue
 Ids given in the .crd file. Requires that the very next line
 contain an integer, or integers, corresponding to the
 count(s) of the last residue of each newly defined chain.
 Optionally the next line can provide the new chain Ids. If
 this second line is not present the defaults are A, B, C, …
 and so on. E.g.

 setChainIds
 99 198 199
 A B C

constructLiveReal Controls how the protein real/live set is defined i.e. the
 protein atoms that are included in the energy calculation
 (real), and which atoms are also allowed to move in the
 calculation (live). The live set is a subset of the real set.
 This keyword is mandatory.

 96

‘readIn’ Read in a formatted text file that defines the protein
real/live set. See Section XII for format specification. The
name of the file must be provided on the very next line e.g.

 readIn
 ~/path/protein_real_live.txt

‘byTemplateCOGs’ Read in a template molecule’s atomic coordinates, from a

.crd, .xyz, .sdf, .mol, .pdb, or Macromodel .dat formatted
file, distances to this molecules center of geometry (COG)
will define the protein real/live set. For example, use co-
crystalized ligand coordinates. The name of the file must be
provided on the very next line e.g.

 byTemplateCOG
 ~/path/template_real_live.crd

‘byTemplateAtoms’ Read in a template molecule’s atomic coordinates, from a
.crd, .xyz, .sdf, .mol, .pdb, or Macromodel .dat formatted
file, distances to which will define the protein real/live set.
For example, use co-crystalized ligand coordinates. The
name of the file must be provided on the very next line e.g.

 byTemplateAtoms
 ~/path/template_real_live.crd

‘byXYZ’ Cartesian coordinates to be used as a reference point to

define the protein real/live set. The coordinates must be
provided on the very next line e.g.

 byXYZ
 3.2345 5.7941 9.7745

The following are relevant for the constructLiveReal choices ‘byTemplateCOG’,
byTemplateAtoms’, and ‘byXYZ’

realCutoffDist The default is 9.0 Angstroms. This cutoff is residue based.
 The distance is from any protein atom to any template
 molecule atom for option ‘byTemplate’ or to a single user
 defined point for option ‘byXYZ’. Any residue with an
 atom within this distance is ‘real’ i.e. its atoms are included
 in the energy calculation, but are not necessarily mobile.

liveCutoffDist The default is 7.0 Angstoms. This cutoff is atom based.
 The distance is from any protein atom to any template
 molecule atom for option ‘byTemplate’ or to a single user
 defined for option ‘byXYZ’. Any atoms within this

 97

 distance are ‘live’ i.e. mobile. They are subset of the ‘real’
 set.

symmetrizeRealSet

If ‘yes’ multiple chains are present and are symmetric, based on exact matching of
residue and atom names between chains, residues will be added to real set as
 necessary to make it symmetric.

‘yes’

‘no’ This is the default.

symmetrizeLiveSet

If multiple chains are present and are symmetric, based on exact matching of
 residue and atom names between chains, atoms will be added to live set as
 necessary to make it symmetric.

‘yes’

‘no’ This is the default.

Example usage 2
--

inputProtein
1
~/path/protein_name.crd
~/path/protein_name.top
~/path/protein_name.mol

constructLiveReal
readIn
~/path/protein_real_live.txt

--

Example usage 3
--

inputProtein
1
~/path/protein_name.crd
~/path/protein_name.top
~/path/protein_name.mol

 98

constructLiveReal
byTemplateAtoms
~/path/template_real_live.crd

realCutoffDist
8.0

liveCutoffDist
6.0

--

===

3. Molecular System Definition Options for Host Molecules

Relevant or molsystemType ‘host’ and ‘host+ligand’.

inputHost Names of input files containing host molecule data. They
 are mandatory and must be given in order with no blank
 lines. The program checks they are present by examination
 of their suffixes.

 1 Signifies that names of formatted data files for host
 molecule 1 will follow. Currently, one ‘molecule’ is the
 limit; however, a system comprising two hosts could still
 be run by including the data for both host molecules in each
 file.

 ~/path/host_name.crd Starting coordinates, atom names, etc. Files must
 conform to standard .crd format (regular or
 extended).

 ~/path/host_name.top Topology and molecular mechanics parameters. See
 Section XII for format specification.

 ~/path/host_name.mol Provides host molecule bond orders and
 stereocenter information. File must be standard
 V2000 or V3000 mol format.

Example usage 4
--

inputHost
1
~/path/host_name.crd
~/path/host_name.top
~/path/host_name.mol

 99

--

===

4. Molecular System Definition Options for Ligand Molecules

Relevant or molsystemType ‘protein+ligand’ and ‘host+ligand’ and ‘ligand’.

inputLigand Names of input files containing host molecule data. They
 are mandatory and must be given in order with no blank
 lines.

 1 Signifies that names of formatted data files for ligand
 molecule 1 will follow. Currently, one ligand molecule is
 the limit.

 ~/path/ligand_name.crd Starting coordinates, atom names, etc. Files must
 conform to standard .crd format (regular or
 extended).

 ~/path/ligand_name.top Topology and molecular mechanics parameters. See
 Section XII for format specification.

 ~/path/ligand_name.mol Provides ligand molecule bond orders and
 stereocenter information. File must be standard
 V2000 or V3000 .mol format.

placeLigandMethod Controls how, if at all, the ligand will be moved from the

.crd starting coordinates given above before the start of a
calculation by placement relative to a user supplied position
in space or template set of coordinates. (Note: Calculation
of center of geometry (COG) excludes hydrogen atoms, as
does the least squares fit for superpositions.) The moved
ligand coordinates then redefine what the ‘input’ .crd
coordinates are.

‘none’ The ligand is not moved from the starting

coordinates defined in .crd above. This is the
default.

‘byReceptorCOG’ Only relevant for molSystemType’s

‘protein+ligand’ and ‘host+ligand’. The receptor’s
(protein or host) center of geometry (COG) is used
as a reference point that the ligand COG is
translated to.

 100

‘byXYZ’ Cartesian coordinates to be used as a reference point
that the ligand center of geometry (COG) is
translated to, and the very next line after that must
contain the Cartesian coordinates, e.g.

. byXYZ
 3.2745 5.7654 9.7653

‘byTemplateCOG’ Read in a template molecule, .crd, .xyz, .sdf, .mol,

.pdb, or Macromodel .dat format, and use its center
of geometry (COG) as a reference point that the
ligand COG is translated to. For this option the very
next line must contain the name of a formatted file
containing the template e.g.

 byTemplateCOG
 ~/path/template_molecule.xyz

‘byTemplateAll’ Read in a template molecule, .crd, .xyz, .sdf, .mol,

.pdb, or Macromodel .dat format, and superimpose
all heavy atoms of the template onto the ligand
atoms. The template should be a conformer of the
same ligand defined by the starting coordinate .crd
file above, with atoms in the same order. For this
option the very next line must contain the name of a
formatted file containing the template e.g.

 byTemplateAll
 ~/path/template_conformer.sdf

‘byTemplatePairsMap’ Read in a template molecule, .crd, .xyz, .sdf, .mol,

.pdb, or Macromodel .dat format, and superimpose
the ligand by chosen pairs of atoms to map onto
each other. For this option the very next line must
contain the name of a formatted file containing the
template, the following line must contain the
template atom indexes for use in superposition, and
the subsequent line must contain the corresponding
ligand atom indexes e.g.

 byTemplatePairsMap
 ~/path/template_molecule.crd
 7 8 9 10 11 12 13
 3 5 11 15 19 20 21

doSnapTemplatePairs If ‘yes’ a harmonic potential (see below) is applied to the
 ligand atoms defined by the ‘byTemplatePairsMap’ setting
 above, but at the position of the template atoms. This

 101

 guides/snaps the chosen ligand atoms to the template
 positions during conformational searches/geometry
 optimizations. Only relvent when placeLigandMethod
 option ‘byTemplatePairsMap’ is used.

‘yes’

‘no’ This is the default.

snapTemplatePairsFC Relevant when doSnapTemplatePairs is ‘yes’. Sets the
 harmonic potential force constant. The default value is 2.0
 Kcal/mol/Angs.

Example usage 5
--

inputLigand
1
~/path/ligand_name.crd
~/path/ligand_name.top
~/path/ligand_name.mol

placeLigandMethod
byTemplateCOG
~/path/template_molecule.xyz

--

===

5. Math Related Options.

randomSeedsMethod

Choose method to generate seeds for the KISS random number generator.
Random number generation is required for various stochastic algorithms in the
VeraChem computational chemistry package.

‘byWallClock’ Uses wall clock timing data combined with process ID data

to automatically generate a different set of seeds every run.
Note that for parallel runs a different seeds are produced for
each process, but only the master process’s set is written to
output files. This is the default.

‘byUser’ The seeds are supplied by the user (see below). This option

must be used if deterministic parallel processor runs are
required.

 102

setRandomSeeds

For ‘byUser’ option above include this keyword and supply four integers in the
 following four lines.

Example usage 6
--

randomSeedsMethod
byUser

setRandomSeeds
9759
9850
7072
203

--

===

6. VeraChem Mining Minima VM2 Calculation Options.

Relevant for calcnType ‘vm2’.

convTolVm2

 Specifies the free energy difference between VM2 iterations that signifies
 convergence. At least 3 iterations must have been carried out and the free energy
 must have gone down compared to the last 2 iterations. The default is 0.01
 Kcal/mol.

maxVm2Iters

 Specifies the maximum number of VM2 iterations to be carried out before
 quitting whether converged or not. The default is 60.

Example usage 7
--

convTolVm2
0.001

 103

maxVm2Iters
30

--

===

7. General Conformational Search Control Options.

Relevant for calcnType ‘vm2’ and ‘confsearch’.

The VeraChem conformational search capability comprises various vibrational mode-
distort-minimize types as well as rigid body translation-rotation distort-minimize
algorithms. The ‘canned’ search styles use various combinations of these algorithms
suitable for specific chemical system-based search demands. For fine control of these
algorithms a ‘custom’ search may be requested (see Section 9).

Iteration and convergence control: only relevant for calcnType option ‘confsearch’.

convTolConfsearch

Specifies the potential energy difference between confsearch iterations that
signifies convergence. At least 3 iterations must have been carried out and the
potential energy must have gone down compared to the last 2 iterations. The
default is 0.01 Kcal/mol.

maxConfsearchIters

 Specifies the maximum number of confsearch iterations to be carried out before
 quitting whether converged or not. The default is 60.

Search methods control: relevant for calcnType options ‘vm2’ and ‘confsearch’.

confSearchStyle

Specifies the style of conformational search to be carried out. Note: See Section 9
for default ligand box constraint settings associated with confSearchStyle settings.

‘standard’ Requests the standard single-mode based sampling of

conformational space. The quickest ‘canned’ search style,
but will not consistently find the lowest energy conformers
of a system, so use with caution.

‘enhanced’ Requests an enhanced sampling of conformational space. In

addition to the single-mode based sampling, search drivers
built from random combinations of pairs of single modes

 104

are used. Usually appropriate when the approximate
pose/position of the ligand is known – for example by
superposition on a ligand with the same scaffold that was
co-crystallized with the receptor. This is the default.

‘rigorous’ Requests a rigorous sampling of conformational space.

Useful when the active/binding site is known, but the
receptor and/or ligand itself may be quite flexible with
large R groups etc. As well as single-mode and random-
pair-modes searches, it includes searches using focused
drivers where fewer torsions are included in each driver,
but distortions tend to be more pronounced.

 ‘vrigorous’ Requests a very rigorous sampling of conformational space.
 Useful when the active/binding site is known, but nothing
 is known about the pose and position of the ligand in the
 active/binding site. Large translations and rotations are
 included in the search as well as mode distortions.

‘confgen1’ This setting is designed solely to generate a diverse set of
conformations for starting points in other calculations. It
carries out only one vm2/confsearch iteration and uses
stricter than default filtering and expanded energy cutoff to
achieve diversity of structures as opposed to energy
convergence.

‘confgen2’ Relevant for molSystemType ‘ligand’ only. The same

process as ‘congen1’ above, but in addition the resulting
conformers are rotated about their 3 principal axes 180
degrees. The 4-fold expanded set of conformers then have
some orientational as well conformational diversity.

‘confgen3’ Placeholder – ongoing implementation.

‘confgen4’ Relevant for molSystemType ‘ligand’ only. The same

process as ‘congen1’ above, but in addition a maximum of
20 of the resulting conformers are randomly rotated about
their 3 principal axes between 0 and 360 degrees to
generate 1000 final conformations. This provides large
orientational diversity. For use when no information on the
ligand pose is known.

 ‘custom’ All search methods and parameters can be finely controlled
 according to the user’s choice. Combinations of the many
 available conformational search options can be employed.
 Recommended for expert users who want detailed control
 of the search procedures. See custom search control
 parameters in Section 8 below.

 105

confGenLengthSort
 Only relevant for molSystemType ‘ligand’ calculations with confSearchStyle
 ‘confgen1’, ‘confgen2’, and ‘confgen3’. If ‘yes’ ligand conformers are sorted
 according to their length (longest first) before any rotomers are generated and
 conformers output.

 ‘yes’ This is the default.

 ‘no’

maxSearches

The maximum number of searches for each mode-distort-minimize search type
strung together to form the search style. The default is 400. This may be
automatically adjusted downwards for small systems. It may also be automatically
adjusted for MPI parallel runs for load balancing.

modeRotnMax

 The maximum rotation angle for a mode distortion.
 The default is 180.0 (degrees).

switchToRandomRotnMax

 The ‘vm2’ or ‘confsearch’ iteration at which the maximum rotation angle for
 mode distortions is randomly chosen from the range modeRotnMax/2 to
 modeRotnMax. The default is 7.

numRlsearch

 The number of random ligand fixed-body translation-rotation searches to be
 carried out. Only relevant when a ‘vrigorous’ search style is requested or when a
 random ligand rotation/translation search is requested through the custom search
 option. The default is 24.

ligandTranMax

 The maximum ligand fixed-body translation distortion length.
 The default is 2.0 (Angstroms).

ligandRotnMax

 The maximum angle for ligand fixed-body rotation distortions.
 The default is 180.0 (degrees).

excludeBackBone

Only relevant for systemType ‘protein’ and ‘protein+ligand’. If ‘yes’ the protein

 106

backbone atoms are excluded from drivers for conformational searches; if ‘no’ the
protein backbone atoms are included in mode-distort conformational searching.
Note that regardless, live (mobile) backbone atoms are always included in
geometry optimizations after mode distortions.

 ‘yes’ This is the default.

 ‘no’

excludeSideChains

Only relevant for systemType ‘protein’ and ‘protein+ligand’. If ‘yes’ the protein
sidechain atoms are excluded from drivers for conformational searches; if ‘no’ the
protein sidechain atoms are included in mode-distort conformational searching.
Note that regardless, live (mobile) sidechain atoms are always included in
geometry optimizations after mode distortions.

 ‘yes’

 ‘no’ This is the default.

excludedAtomsFile

Optionally specify a text file that provides a list of atoms to be excluded from
drivers for conformational searches. See Section XII for format.

~/path/file_name_excluded_atoms.txt

forceConstCutoff

Mode drivers with force constants larger than this cutoff are excluded from the
mode search. The default is 5000.0.

deltaLevel1Cutoff

Relevant when there is a level 2 correction to the level 1 energy e.g. single –point
energy with PBSA solvation model at geometry determined with GB solvation
model. For level 1 energy differences between the lowest energy conformer and
the conformer just found that are greater than this cutoff, the level 2 energy
correction is skipped and the current conformer discarded. The default is 20.0
Kcal/mol.

nonBlockingUpdate

This keyword is only relevant for MPI multi-processor runs. If ‘yes’, non-
blocking sends and receives are used to communicate low energy structures
between MPI processes every ‘vm2’ or ‘confsearch’ iteration; if ‘no’, blocking
collective operations are used, which can result in large latencies.

 107

‘yes’ This is the default for systemType ‘protein’, ‘protein+ligand’,
‘host’, and ‘host+ligand’.

 ‘no’ This is the default for systemType ‘ligand’.

doLoadBalance

This keyword is only relevant for MPI multi-processor runs. If ‘yes’, the MPI
process that finishes its assignment of searches first in each ‘vm2’ or ‘confsearch’
iteration signals all other processes to proceed when their current mode distort-
minimize is complete. This results in some skipped searches, but improves load
balancing considerably.

‘yes’ This is the default for systemType ‘protein’, ‘protein+ligand’,

‘host’, and ‘host+ligand’.

 ‘no’ This is the default for systemType ‘ligand’.

mixSearchBasis

This keyword and the following four related ones are only relevant for MPI multi-
processor runs. Periodically, multiple conformers are used as a basis for
independent (i.e. decoupled) conformational searching, with no communication
between MPI processes. This adds diversity to the conformational search. The
number of conformer starting structures equals the number of MPI processes. (see
mixSearchPicks below).

 Integer 0, 1 to 4 0 sets this option as off

1 Use multiple conformers every call to the
conformational search i.e. every vm2 or confsearch
iteration.

2 Use multiple conformers every second

vm2/confsearch iteration. This is the default.

3 Use multiple conformers every third
vm2/confsearch iteration.

4 Use multiple conformers every fourth

vm2/confsearch iteration.

mixSearchIters

Relevant if concurrent conformer searching is on (i.e. if mixSearchBasis above is
not 0). Sets the vm2/confsearch iteration above which concurrent searching is
completely switched off. The default is 20.

 108

mixSearchPicks

 Controls how the group of conformers is selected for the ‘mixSearchBasis’
 approach.

 ‘inorder’ Select N conformers in order of their free energy as the set
 of conformers to search on, where N is the number of MPI
 processes.

 ‘random1’ Select the first N/2 conformers in order, then pick an
 additional N/2 at random from all the remaining
 conformers.

 ‘random2’ Select the first N/2 conformers in order, then pick an
 additional N/2 at random from the next poolSize – N/2
 conformers in order of their free energy. See below for
 poolSize. This is the default.

 ‘cluster’ Select the first N/2 conformers in order, then cluster the
 remaining conformers starting at N/2 + 1 with an RMSD
 cutoff of 0.5 Angstroms. Pick the lowest energy conformer
 of each cluster up to N MPI processes. If not enough
 clusters present select from the lowest energy conformer up
 again (to double search the low energy conformers).

doClusterBy

Controls whether clustering (mixSearchPicks ‘cluster’ option) is based on
RMSDs of the whole molecule system or a component. For example, for a
protein+ligand complex the clustering can be set as based solely on the ligand
RMSDs.

‘complex’ The default if molSystemType is ‘protein+ligand’ or

‘host+ligand’.

‘receptor’ The only option if molSystemType is ‘protein’ or ‘host’.

Can also be selected for ‘protein+ligand’ or ‘host+ligand’
runs.

‘ligand’ The only option if molSystemType is ‘ligand’. Can also be

selected for ‘protein+ligand’ or ‘host+ligand’ runs.

poolSize

For mixSearchPicks option ‘random2’ option, sets the size of the pool of
conformers that are picked from at random. The default is 64. For the first
iteration of a VM2 run when starting conformers are read in (see Section 1.) the
default is quadrupled to allow a more diverse search basis. For ‘random1’ and
‘cluster’ options it is hardwired as all available conformers; for option ‘inorder’ it

 109

is hardwired as the number of MPI processes.

relaxNonDriverAtoms

 If ‘yes’, when carrying out distortions along drivers, non-driver atoms are allowed
 to relax after each distortion step via a few geometry optimization cycles (driver
 atoms are kept fixed during these cycles). If ‘no’ is selected all non-driver atoms
 are kept fixed in space during distortions. Note that enforcing rigidity during
 driver distortions will speed up the search, but will invariably result in extremely
 high energies for small driver distortions limiting the conformational space
 sampled.

 ‘yes’ This is the default.

 ‘no’

Example usage 8
--

confSearchStyle
vrigorous

maxSearches
200

numRlsearch
48

excludedAtomsFile
~/path/file_name_excluded_atoms.txt

mixSearchBasis
2

mixSearchPicks
random2

--

===

8. Custom Conformational Search Options.

Relevant for calcnType ‘vm2’ and ‘confsearch’.

Use these options when keyword confSearchStyle is set to ‘custom’.

 110

Search

 Choose the type of search to be carried out.

 ‘mode’ Initiates a search using distortions along mode based drivers

followed by geometry optimization. The nature of the mode-based
search can be further controlled by the options below. This is the
default.

 ‘ligand’ Initiates a ligand based search where the ligand is translated,

and/or rotated followed by a geometry optimzation of the system.
The ligand based search can be further controlled by the options
described below.

 ‘combined1’ Requests a mode based search followed immediately by a
 ligand based search.

 ‘combined2’ Requests a ligand based search followed immediately by a mode

based search.

modeSearch

 Choose the type of mode search to be carried out.

 ‘normal’ A standard mode search with distortions along drivers weighted

according to mode coefficients. This is the default.

 ‘focused’ A more robust mode search with more focused and larger

distortions. This style of mode search cannot be applied to ligand
only systems.

 ‘combined1’ Requests a standard mode search directly followed by a robust

mode search i.e. ‘normal’ then ‘focused’.

 ‘combined2’ Requests a robust mode search directly followed by a standard

mode search i.e. ‘focused’ then ‘normal’.

mode

For a ‘normal’ search (see above), choose how to determine geometry
displacements i.e. drivers.

 ‘single’ Use individual modes only. This is the default.

 ‘pair’ Use a linear combination of randomly chosen pairs of modes

(generated on the fly).

‘combined1’ Carry out a ‘single’ mode search directly followed by a ‘pair’
mode search.

 111

 ‘combined2’ Carry out a ‘pair' mode search directly followed by a 'single' mode

search.

focusedSearch

 For a ‘focused’ search (see above), choose ligand driven, receptor driven, or a
 combination of the two.

 ‘ligand’ Ligand driven focused search only. All receptor atom and any

small ligand mode coefficients are zeroed out. Distortions are then
focused on small groups of ligand atoms.

 ‘receptor’ Receptor driven focused search only. All ligand atom and any

small receptor mode coefficients are zeroed out. Distortions are
then focused on small groups of receptor atoms.

 ‘combined1’ Carry out a ‘ligand’ driven focused search directly followed by
 a ‘receptor’ driven focused search. This is the default.

 ‘combined2’ Carry out a ‘receptor’ driven focused search directly followed
 by a ‘ligand’ driven focused search.

ndrivers N Number of drivers N to select from the total available (only

applicable to ‘single’ mode generated drivers).

 -1 Select all available drivers i.e. N is set equal the total number of

drivers generated. This the default.

drivers

 Determines how the drivers are chosen or ordered.

 ‘largest’ Pick N drivers in order of the largest number of coefficients > |0.1|.

This is the default.

 ‘random’ Randomly pick N drivers.

 ‘bottom’ Pick the N drivers with the smallest eigenvalues.

 ‘middle’ Pick N drivers from the middle range of eigenvalues.

 ‘top’ Pick the N drivers with the largest eigenvectors.

binRandomPairs

 For searches with random pairs of modes if ‘yes’ the possible pair combination

 112

 are binned and the algorithm will pick equally from all the bins; if ‘no’ totally
 random pair combinations are used.

 ‘yes’ This is the default for host involved systems and ligand only
 systems.

 ‘no’ This is the default for protein involved systems.

modeDistMaxE

Specify the energy change cutoff for mode distortions. The default is 2000.0
(kcal/mol).

ligandSearch

 Choose the type of ligand search to be carried out.

 ‘systematic’ Requests a systematic ligand search. Rotations of +/-
 ligandRotnMax/4, ligandRotnMax/2, and ligandRotnMax degrees
 (see ligandRotnMax, Section 7) and translations of +/-
 ligandTranMax/4, ligandTranMax/2, and ligandTranMax
 Angstoms (see ligandTranMax, Section 7) of the ligand about and
 along its principal axes are carried out in small steps. Between
 each step a few geometry relaxation steps are carried out for the
 receptor. Combined translation-rotations are also carried out giving
 a total of 80 searches per dimension searched. The number of
 dimensions searched is controlled by sligandSearch (see below).
 The preceding distances and angles are limits, and the rotation or
 translation is stopped at any step that results in an energy change
 greater than ligandDistMaxE (see below). After stopping each
 rotation or translation, a full geometry optimization is carried out.

 ‘random’ Requests a search involving random translations and rotations of
 the ligand along and about its principal axes. Rotation limits are
 +/- ligandRotnMax and translation limits are +/- ligandTranMax.
 The number of dimensions searched is controlled by rligandSearch
 (see below). Again, distortions are stopped if an energy change
 greater than ligandDistMaxE occurs. A geometry optimization is
 carried out after each distortion. The number of searches is
 controlled by numRlsearch (see Section 7 above).

 ‘combined1’ Requests a systematic ligand search directly followed by a random

ligand search.

 ‘combined2’ Requests a random ligand search directly followed by a systematic

ligand search.

sligandSearch

 113

 Number of dimensions in which to carry the systematic ligand search.

 ‘1d’ Rotation about the principal axis with the smallest principal

moment of inertia, followed by full geometry optimization. Then
translation along the same axis again followed by geometry
optimization. Then translation-rotation along the same axis
followed by geometry optimization. This is the default.

 ‘2d’ Carry out '1d' rotations as above, then do the same for the axis with

the second largest principal moment of inertia. Then move onto the
translations, then onto translation-rotations.

 ‘3d’ All principal axes are tried in the same manner as above.

rligandSearch

 Number of dimensions in which to carry the random ligand search plus control of
 the procedure.

 ‘1d’ Random translations and rotations along and about the principal

axis with the smallest principal moment of inertia, followed by full
geometry optimization. This is the default.

 ‘2d’ Carry out ‘1d’ as above, then do the same for the axis with the

second largest principal moment of inertia i.e. separate geometry
optimization for each axis trans/rots.

 ‘3d’ All principal axes are tried in the same manner as above.

 ‘comb2d’ Combines the random translations and rotations along and about

two principal axes before the geometry relaxation step.

 ‘comb3d’ Combines the random translations and rotations along all principal

axes before the geometry relaxation step.

ligandDistMaxE

Specify the energy change cutoff for ligand rotation/translation distortions. The
default is 10000.0 (kcal/mol).

Example usage 9
Custom search settings that reproduce the confSearchStyle setting ‘vrigorous’ described
above in Section 7.
--

Search
combined1

 114

modeSearch
combined1

mode
combined1

sdriver
1

ndrivers
-1

drivers
bottom

modeDistMaxE
2000.0

ligandSearch
combined1

sligandSearch
3d

rligandSearch
comb3d

ligandDistMaxE
10000.0

--

===

9. Options and Control of Spatial Boundary Based Conformer Rejection.

Relevant for calcnType ‘vm2’ and ‘confsearch’.

These options allow conformers that do not fit the users predetermined geometric criteria
to be discarded during a conformational search. They allow, for example, protein-ligand
conformations where the ligand may have left the region of the known binding pocket to
be discarded, or for conformers in which explicit water molecules that move too far away
from a known crystallographic position to be discarded. These region-based exclusions
can be used in conjunction with or be replaced by energy-based constraints applied
during geometry optimizations (see Section 14).

boxedAtoms

 115

 integer1 integer2 integer3 ….

An integer or list of integers that specifies an atom or atoms (other than ligand
atoms) to apply a spherical boundary to; for example, an explicit water molecule
oxygen atom. The center of geometry of the atoms in the list is only allowed to
move in a sphere of specified dimension (see below), if it moves outside the
sphere the conformation is rejected. Atoms on the list are also fixed in space
during mode distortions. The reference center is defined by the input .crd
coordinates of specified atoms. This option may be given up to twenty times i.e.
the spherical box ‘constraint’ may be applied to twenty separate groups of atoms.
Each spherical box may apply to a maximum of 200 atoms.

atomBoxSize

 Specify the radius of the sphere that the ‘boxedAtoms’ center of coordinates must
 remain in. The default is 1.0 (Angstroms). If the ‘boxedAtoms’ center of
 coordinates moves outside this sphere the conformation is rejected.

ligandBoxSize

Specify the radius of the sphere in Angstroms that the ligand center of coordinates
must remain in. If the ligand center of coordinates moves outside this spherical
box the conformer is rejected. The reference center is defined by the input .crd
coordinates of the ligand. To turn this filter off set as -1.0. The default is -1.0
(off) for molSystemType ‘host+ligand’. For all other molSystemTypes, the
default radius depends on the confSearchStyle: for ‘custom’, ‘standard’, and
‘enhanced’ it is 1.0 Angstroms; for ‘rigorous’ it is 2.0 Angstroms; for ‘vrigorous’
it is 4.0 Angstroms.

Example usage 10
--

boxedAtoms
32 35

atomBoxSize
2.0

ligandBoxSize
2.0

--

===

10. Options for Free Energy Processing of Conformers.

 116

Relevant for calcnType ‘vm2’ and ‘feprocess’.

modeScanning Allows the mode scanning step in the calculation of the
 configuration integral to be turned on or off.

 ‘on’ This is the default.

 ‘off’

temperature Temperature in Kelvin used in the calculation of
 configurational integrals. The default is 300.00.

freeEnergyPreFactor

Control which atoms are used in the calculation of the free energy prefactor. Only
relevant for protein involved calculations.

 ‘useLiveAtoms’ Use only the ‘live’ atoms.

 ‘useRealAtoms’ Use all ‘real’ atoms. This is the default.

Example usage 11
--

modeScanning
off

temperature
273.15

--

===

11. Stereochemistry Checking and Enforcement Control.

Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, and ‘geomopt’.

maintainCisTrans

If ‘yes’ cis/trans arrangements across double bonds are enforced by rejecting
conformers where isomerization has occurred; if set as ‘no’ cis/trans
isomerization is allowed. Double bonds are as identified by the bond orders given
in the input mol/sdf file; Cis/trans arrangements across double bonds are
identified automatically.

 117

 ‘yes’ This is the default.

 ‘no’

maintainParity

If ‘yes’ R/S stereocenters are enforced by rejecting conformers where
stereoisomerization has occurred. If set as ‘no’ stereoisomerization is allowed.
R/S stereocenters are as defined in the input mol/sdf file.

 ‘yes’ This is the default.

 ‘no’

maintainProteinPepBonds

Control the stereochemistry of protein peptide bonds by rejecting generated
conformers that violate the chosen option.

‘asInput’ The stereochemistry of protein peptide bonds are

maintained as they are in the user provided input structure.
This is the default.

‘asTrans’ An attempt will be made to flip any cis protein peptide

bonds found in the input structure and all peptide bonds
will then be maintained as trans. This option is not yet
functional.

 ‘no’ Protein peptide bond isomerization is allowed.

Example usage 12
--

maintainCisTrans
yes

MaintainParity
yes

MaintainProteinPepBonds
asInput

--

 118

===

12. Control of Filtering Out Conformer Repeats.

Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, ‘rmsd’, and ‘filter’.

These parameters set energy difference cutoffs and geometry RMSD cutoffs that control
how similar two conformers have to be for one of them to be designated a repeat and
discarded. Additionally, energy parameters that control the culling of ‘high energy’
conformers can be set.

preFilterCalcnType

Choose type of calculation to be carried out prior to filtering. Only relevant for
calcnType ‘filter’.

‘geomopt’ Geometry optimization. This is the default.

 ‘energy+grad’ Single-point energy and gradient.

 ‘energy’ Single-point energy.

 ‘none’ No calculation before filtering.

pairCutoff1 Used in the filtering conformers either read in or resulting

from a conformational search that have not undergone free
energy processing. It is the bonded-term-energy difference
below which a pair of conformers will be geometrically
compared. The default for calcnType ‘vm2’ is 0.5
Kcal/mol; for calcnType’s ‘filter’, ‘rmsd’, ‘confsearch’, the
default is 2.0 Kcal/mol.

pairCutoff2 Used in the filtering conformers either read in or resulting

from a conformational search that have undergone free
energy processing (relevant for calcnType’s ‘vm2’ and
‘feprocess’). It is the bonded-term-energy difference below
which a pair of conformers will be geometrically
compared. The default is 1.0 Kcal/mol.

pairRmsdCutoff1 Used in the filtering conformers either read in or resulting

from a conformational search that have not undergone free
energy processing. It is the geometric RMSD lower than
which the conformer with the higher potential energy is
discarded. The default for calcnType ‘vm2’ is 0.2
Angstroms; for calcnType’s ‘filter’, ‘rmsd’, and
‘confsearch’ the default is 0.3 Angstroms.

 119

pairRmsdCutoff2 Used in the filtering conformers either read in or resulting
 from a conformational search that have undergone free
 energy processing. It is the geometric RMSD lower than
 which the conformer with the higher free energy is
 discarded. The default is 0.3 Angstroms.

firstConfCullE Energy cutoff used for initial culls e.g. the first 2 VM2

iterations. Depending on the calculation type and status, it
is the conformer potential energy or free energy relative to
the current lowest energy conformer at which all higher
energy conformers are discarded. The default is 20.0
Kcal/mol except for calcnType’s ‘filter’ and ‘rmsd’ when
the default is 100.0 Kcal/mol.

ConfCullE Standard energy cutoff used for culling high energy

conformers. Depending on the calculation type and status,
it is the conformer potential energy or free energy relative
to the current lowest energy conformer at which all higher
energy conformers are discarded. The default is 10.0
Kcal/mol except for calcnType’s ‘filter’ and ‘rmsd’ when
the default is 100.0 Kcal/mol.

displaceCurrentConfs

Only relevant for the molSystemType’s ‘protein’ and ‘protein+ligand’. If ‘yes’
during the filtering process a newly generated conformer found to be a repeat of a
currently established conformer, which also has a lower energy (this energy
difference will always be very small i.e. a fraction of a kcal/mol) will displace the
currently established conformer. In some cases with this will lead to very small
energy fluctuations between iterations and therefore very slow convergence,
therefore the default is set as ‘no’.

 ‘yes’

 ‘no’ This is the default.

Example usage 13
--

pairCutoff1
0.2

pairCutoff2
0.3

firstConfCullE

 120

30.0

ConfCullE
20.0

--

===

13. Options for Molecular Alignment and RMSD Calculation.

Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, ‘rmsd’, ‘filter’, and ‘geomopt’.
For calcnType ‘rmsd’ a set of conformers must be read-in via the readInConfs keyword -
see Section 1.

Currently alignment options are only relevant for molsystemType ‘ligand’, ‘host’, and
‘host+ligand’. For molsystemType ‘protein’ and ‘protein+ligand’ no alignment will be
carried out regardless of user input as protein real-fixed atoms are already exactly aligned
and provide the reference position and orientation for the whole system.

The alignment options allow the conformations produced during the course of a particular
calculation to be superimposed on the input conformation for output. The default for the
molsystemType’s listed above is for alignment to be turned on. Unless the user wants to
specify the specific atoms to align, e.g. when there is a suitable ligand scaffold, the
defaults picked by the program are usually appropriate.

preRmsdCalcnType

Choose type of calculation to be carried out prior to RMSD calculation. Only
relevant for calcnType ‘rmsd’.

‘geomopt’ Geometry optimization. This is the default.

 ‘energy+grad’ Single-point energy and gradient.

 ‘energy’ Single-point energy.

 ‘none’ No calculation before filtering.

preRmsdFilter

If ‘yes’ filter the read-in conformers before calculation of RMSD. Only relevant
for calcnType ‘rmsd’.

 ‘yes’

 121

 ‘no’ This is the default.

rmsdAllPairsMethod

Choose symmetry aware method to calculate and output the RMSD between all
pairs of conformers that remain after any filtering. Only relevant for calcnType
‘rmsd’.

‘symaware1’ Basic fast symmetry aware algorithm. This is the default.

‘symaware2’ More sophisticated and expensive symmetry aware

algorithm – see J. Chem. Inf. Comput. Sci. 44, 1301-1313
(2004). Not available for molSystem ‘protein’ and
‘protein+ligand’

‘none’ Only RMSDs between the Rank 1 conformer and the rest

are calculated using the basic symmetry aware method.

confAlignment

 ‘none’ Turn alignment off.

 ‘receptor’ The default for molsystemType ‘host’ and
 ‘host+ligand’ runs.

 ‘ligand’ The default for molsystemType ‘ligand’ runs.

 ‘selectatoms’ Indicates that the user will provide specific atoms to
 use for alignment.

numAlignAtoms Number of atoms the user will provide for
 alignment.
 N

atomsToAlign Integers identifying which atoms to align.

 integer1 integer2 integer3 interger4 …

Example usage 14
--

confAlignment
selectatoms

numAlignAtoms
11

 122

atomsToAlign
10 16 21 18 20 12 19 17 15 7 24

--

===

14. Geometry Optimization Options and Control, Including Constraints.

Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, and ‘geomopt’.

The following control convergence criteria, geometry optimization methods, and
maximum allowed geometry steps to achieve convergence.

maxAtomGrad Standard convergence criterion. Used, for example, for
 calcnType ‘geomopt’ or ‘feprocess’ runs or for final
 geometries after mode distortion. It is the maximum
 absolute value gradient allowed of any individual mobile
 atom in the system. A second criterion is that the whole
 mobile system gradient RMSD must also be less than 1/3 of
 this parameter. The default is 0.001 (Kcal/mol)/Angstrom.

maxAtomGradLoose Loose convergence criterion. Used, for example, for an
 initial geometry optimization after a mode distortion. It is
 the maximum absolute value gradient allowed of any
 individual mobile atom in the system. As above, the whole
 mobile system gradient RMSD must also be less than 1/3 of
 this parameter. The default is 0.01 (Kcal/mol)/Angstrom.

doPreoptSteps Do some initial geometry steps before a first full geometry
 optimization is attempted. During pre-optimizations steps
 any atom gradients above 100.0 Kcal/mol/Angstrom or
 below -100.0 Kcal/mol/Angstrom are set to +/- 100.0
 Kcal/mol/Angstrom are damped. This is useful for initial
 starting structures where there may be close contacts.

 ‘yes’ Turn this option on. This is the default.

 ‘no’ Turn this option off.

preoptMethod Method to use for the pre-optimization geometry steps.

 ‘1’ Quasi-Newton geometry optimization algorithm.

 ‘2’ Conjugate-gradient geometry optimization algorithm. This
 is the default.

 123

maxPreoptSteps Maximum number of pre-optimization geometry steps. The
 default is 100.

geomoptMethod Method to use for geometry optimization.

 ‘1’ Quasi-Newton geometry optimization algorithm. This is
 the default.

 ‘2’ Conjugate-gradient geometry optimization algorithm.

maxGeomoptSteps Maximum number of geometry steps allowed for a
 geometry optimization. The default is 5000.

batchEnergyCutoff This energy cutoff overrides the ConfCullE cutoffs in
 Section 12. The default is large so when the user supplies a
 wide range of conformers for geometry optimization less
 are discarded and can be examined via formatted output
 files. The default is 10000.0 Kcal/mol.

The following apply constraints to selected atoms in the system so they do not move far
away from a desired position during a geometry optimization.

tetheredAtoms File that identifies atoms in the system that will be tethered.
 Multiple groups can be defined with each group being subject to
 different constraints defined by the harmonic and polynomial
 tether related keywords that follow below. The file name is
 arbitrary. See Section XII for format specification.

 ~/path/tethered_atoms_file.txt

tetherForceConstant

 Specify a force constant if a harmonic constraint is required.

To specify a polynomial constraint the following three options with no blank lines are
required to give the polynomial function E(dr) = A*(dr/R)**n.

tetherScalingFactor

 Real number A

tetherDistance

 124

 Real number R

tetherOrder

 Real number n

nfreezeAtoms Number of ‘live’ atoms to freeze in space during a geometry
 optimization by simply zeroing out their gradient. Currently, it is
 recommended that this option is not used for calcnType ‘vm2’ or
 ‘feprocess’.

freezeAtoms List of integers that identify which atoms to freeze.

 integer1 integer2 integer3 integer4 ….

Example usage 15
--

maxAtomGrad
0.001

maxAtomGradLoose
0.01

doPreoptSteps
yes

preoptMethod
2

maxPreoptSteps
400

geomoptMethod
1

maxGeomoptSteps
10000

tetheredAtoms
~/path/tethered_atoms_file.txt

Constrained Group 1

tetherScalingFactor

 125

100.0
tetherDistance
0.25
tetherOrder
12.0

Constrained Group 2

tetherScalingFactor
1.0
tetherDistance
0.5
teherOrder
12.0

--

===

15. Molecular mechanics potential energy calculation: methods and usage control

level1mmMethod

Choose the method to treat mm solvation for energy derivative based calculations
i.e. energy+grad calculations, geometry optimizations, and hessian calculations.
Currently, straightforward use of the defaults is suggested. Control and selection
of parameters for the methods themselves is described in Sections 16-19 below.

 ‘gb’ This is the default. Use a Generalized Born solvation method.

 ‘cd’ Use a constant dielectric solvation model.

 ‘dd’ Use distant dependent dielectric solvation model.

level2mmMethod

Choose the method to treat mm solvation for single-point energy corrections
applied to, for example, any molecular geometries determined using
level1mmMethod. For calcnType ‘energy’ and ‘energy+grad’ this single-point
energy will be applied to the input structure(s). Control and selection of
parameters for the methods themselves is described in Sections 16-19 below.

 ‘pbsa’ This is the default. Use the Poisson-Boltzmann Surface-Area
 (PBSA) solvation model.

‘none’ The PBSA energy correction will not be carried out. Only level 1
energies will be used.

 126

allowZeroWaterLJ Controls whether Lennard-Jones parameters for water hydrogen
atoms will be allowed to be zero – as they are in OPLS.

 ‘yes’ Zero value parameters are allowed.

‘no’ Zero value parameters are not allowed and are replaced with TIP3P
parameters. This is the default.

allowZeroLJ Controls whether Lennard-Jones parameters for non-water

hydrogen atoms will be allowed to be zero – as they are in OPLS
for polar hydrogens.

 ‘yes’ Zero value parameters are allowed.

‘no’ Zero value parameters are not allowed and are replaced with:
 CHARMM/Dreiding: 𝜀𝜀𝑖𝑖 = −0.046
 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.2245⁄
 AMBER/GAFF: 𝜀𝜀𝑖𝑖 = −0.0157
 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.6⁄
 OPLS: 𝜀𝜀𝑖𝑖 = −0.03
 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.2806⁄

This is the default.

mmAddFxdFxdConst

Controls whether the fixed-fixed real atom constant energy terms e.g. bond, angle,
dihedral, improper, vdW, pure Coulomb (not GB solvation pairs) are calculated
once at the start of a calculation and added as corrective constants throughout the
calculation. Addition of these terms may facilitate energy comparisons with other
programs.

‘yes’ Calculate the fixed-fixed constant energy terms. This is the

default.

‘no’ Do not calculate the fixed-fixed terms.

Example usage 16
--

level1mmMethod
gb

level2mmMethod
pbsa

 127

--

===

16. Molecular mechanics Generalized Born (GB) solvation model control

 gbSolvationModel

 Choose the particular GB model used.

‘still97’ Use Still’s analytical method for calculating the
approximate Born radii for use in the GB solvation energy
expression. See Qiu, Hollinger, and Still, J. Phys. Chem. A
1997, 101, 3005-3014. This is the default.

 ‘hawkins96’ Currently disabled due to ongoing reimplementation work.

still97ParamSet

Choose the P1-P5 scaling parameters for still97 GB solvation energy calculations.

 ‘still’ Use the original scaling parameters from J. Phys.
 Chem. A 1997, 101, 3005-3014. This is the default.

‘gilson’ Use an alternative set of scaling parameters. See David, Luo, and
Gilson, J. Comput. Chem. 2000, 21, 295-309.

gbDielectricExt

External solvent dielectric used in the GB solvation model. The default value is
80.0, modeling bulk water.

gbDielectricInt

Internal (i.e. solute) dielectric used in the GB solvation model. The default value
is 1.0.

gbCavityRadii

Choose the atomic cavity radii to use in the GB solvation model.

 ‘halfRmin’ Use Rmin/2, where Rmin is the force field Lennard-Jones

parameter, except for hydrogen atoms bonded to hetero atoms,
which are set to 1.15 Å, and covalently bound fluorine atoms,
which are set to 2.00 Å. This is the default, with the only
exception being CHARMM combined with ‘still97’ and
still97ParamSet option ‘gilson’ (see ‘legacy’ option below).

 128

‘halfSigma’ Use σ/2, where σ is the force field Lennard-Jones parameter,

except for hydrogen atoms bonded to hetero atoms, which are set
to 1.15 Å, and covalently bound fluorine atoms, which are set to
2.00 Å.

‘bondi’ Use the Bondi van der Waals radii. See Bondi, A., JPC 1964, 68,

441.

‘mbondi’ Use the modified Bondi radii. See Rizzo, Aynechi, Case and
Kuntz, J. Chem. Theory Comput. 2006, 2, 128-139.

‘legacy’ Use Rmin/2, where Rmin is the force field Lennard-Jones

parameter, except for hydrogen atom radii, which are all set to 1.20
Å. This is the default for gbSolvationModel ‘still97’ and
still97ParamSet ‘gilson’.
Note: These are the radii used in all preceding versions of the
VM2 software package i.e. version 2.1 and earlier, regardless of
the force field and model.

Example usage 17
--

gbSolvationModel
still97

still97ParamSet
still

gbCavityRadii
legacy

--

17. Molecular mechanics constant (CD) dielectric solvation model control

cdSolventDielectric

Solvent dielectric constant used in the constant dielectric solvation model ‘mm-
cd’. The default value is 80.0.

===

18. Molecular mechanics distance dependent (DD) dielectric solvation model control

ddCoefficient

 129

Coefficient used in the distance dependent dielectric solvation model ‘mm-dd’.

 The default value is 4.0 resulting in the so-called 1/4r method.

===

19. Molecular mechanics Poisson Boltzmann Surface Area (PBSA) solvation model
control

pbDielectricExt

External solvent dielectric used in the PBSA solvation model. The default value
is 80.0 modeling bulk water.

pbDielectricInt

Internal (i.e. solute) dielectric used in the PBSA solvation model. The default
value is 1.0.

pbsaCavityRadii

Choose the atomic cavity radii to use in the PBSA solvation model. Currently the
same radii are used for calculation of the electrostatic solvation energy (PB) and
the non-polar solvation energy (SA). Note: If the ‘still97’/’gilson’ GB solvation
model is being used, to match GB and PBSA cavity radii the ‘legacy’ option
below must be explicitly selected.

 ‘halfRmin’ Use Rmin/2, where Rmin is the force field Lennard-Jones

parameter, except for hydrogen atoms bonded to hetero atoms,
which are set to 1.15 Å, and covalently bound fluorine atoms,
which are set to 2.00 Å. This is the default.

‘halfSigma’ Use σ/2, where σ is the force field Lennard-Jones parameter,

except for hydrogen atoms bonded to hetero atoms, which are set
to 1.15 Å, and covalently bound fluorine atoms, which are set to
2.00 Å.

‘fitted’ Use atomic cavity radii fitted to reproduce solvation energies

determined using explicit TIP3P water molecules and the AMBER
force field. See Tan, Yang, and Luo, J. Phys. Chem. B 2006, 110,
18680-18687. For GAFF atoms i.e. non-peptide atoms, ‘mbondi’
radii are used.

‘bondi’ Use the Bondi van der Waals radii. See Bondi, A., JPC 1964, 68,

441.

‘mbondi’ Use the modified Bondi radii. See Rizzo, Aynechi, Case and
Kuntz, J. Chem. Theory Comput. 2006, 2, 128-139.

 130

‘legacy’ Use Rmin/2, where Rmin is the force field Lennard-Jones

parameter, except for hydrogen atom radii, which are all set to 1.20
Å.
Note: These are the radii used in all preceding versions of the
VM2 software package i.e. version 2.1 and earlier, regardless of
the force field and model.

sasaProbeRadius

Set the solvent accessible surface area (SASA) probe radius. The default value is
1.4 Angstroms.

===

 131

IX. Ligand example

1. CHARMM pathway using Discovery Studio Visualizer (DSV)

1.1. Get mol2 data file for chosen molecule: ibuprofen

Step 1: Go to, for example, the ZINC database website http://zinc15.docking.org and
perform a search for ‘ibuprofen’.

Step 2: Placeholder

1.2. Load molecule into DSV

Step 1: Placeholder

2. CHARMM pathway using the web user interface CHARMMing

2.1. Get mol2 data file for chosen molecule: ibuprofen

Step 1: Go to, for example, the ZINC database website http://zinc15.docking.org and
perform a search for ‘ibuprofen’.

Step 2: Placeholder

2.2. Load the molecule

Step 1: Placeholder

X. Protein-ligand example: HIV-1 protease and 38 inhibitors

This is a full example of setup, execution of calculations, and collection of binding
affinity results for a protein plus ligand series: the target protein is human HIV-1 protease
and there are 38 ligands in the inhibitor series. (49)

NOTE: You will need a working installation of AmberTools with the $AMBERHOME
environment variable set to carry out the full procedure as described below. Please see
http://ambermd.org/ to download AmberTools and for its documentation.

http://zinc15.docking.org/
http://zinc15.docking.org/
http://ambermd.org/

 132

To proceed, first, untar the examples file vcCompChem_2_8_2_examples.tar.bz2, which
is provided with the package:

tar xvf vcCompChem_2_8_2_examples.tar.bz2

The main directory for this example is:

 vcCompChem_2_8_2_examples/protein_ligand/hiv1_protease_series_1/

it contains a readme file: README.hiv1p , which describes the overall process, stepping
through the following three directories in turn

hiv1_protease_series_1/setup
hiv1_protease_series_1/run
hiv1_protease_series_1/results

An outline of each step now follows. You can skip the setup section by going straight to
Section 2. and making use of the “-d reference” option, described in Sections 2.1.2. and
2.2.2.

1. Setup

The procedure starts with setup, namely structure preparation, typing, charge assignment
of the protein target molecule and ligand inhibitors, and assignment of mobile and fixed
protein atoms.

1.1. Protein setup

The basis for this setup is the crystal structure of HIV-1 protease and the co-crystalized
inhibitor AD-81. The PDB access code for this structure is 2I0D. The multiple aspects to
consider when preparing a protein for molecular mechanics calculations starting from
PDB coordinates are described in Section V 3.1. of this manual. Furthermore, the
AMBER reference manual, available through the link given above, provides detailed
advice for the use of AmberTools in this process - see the section titled “Preparing PDB
Files”.

The files used for the following steps are found in the following subdirectory:

hiv1_protease_series_1/setup/protein

1.1.1. Remove all hetatoms and water atoms except atom 1580

For this particular receptor and set of inhibitors, it is important to explicitly include one
of the water molecules (atom number 1580) present in the 2I0D crystal structure.
Therefore, edit the pdb file 2i0d.pdb deleting everything prior to the first ATOM entry,
all HETATOM entries except for that of atom 1580, and everything except the END
record after HETATOM 1580. Name the resulting file 2i0d_1580.pdb.

1.1.2. Extract the co-crystalized ligand

 133

The co-crystalized ligand in 2I0D is used as a reference structure, so copy and edit the
original 2i0d.pdb file, deleting all atoms except the AD-81 ligand atoms, and rename the
file ad_81_from_2i0d.pdb .

1.1.3. Prepare the PDB file for tleap

Prepare the pdb file for tleap by running the script run_pdb4amber_1.sh, i.e.

 ./run_pdb4amber_1.sh >& run_pdb4amber_1.log &

This will produce the file 2i0d_1580_p4a.pdb as well as other files required by tleap.

1.1.4. Run tleap to assign parameters

Run tleap to assign parameters using the script run_tleap_2.sh.

 ./run_tleap_2.sh >& run_tleap_2.log &

This will produce .incpcrd, .prmtop, .mol2, and .pdb files. These will be named
2i0d_1580_p4a_tleap.*

1.1.5. Convert .prmtop and .inpcrd to .crd, .top, and .mol files

Run the VeraChem amber pathway conversion tool prm2top.pyc using the script
run_prm2top_3.sh, i.e.

 ./run_prm2top_3.sh >& run_prm2top_3.log &

This will produce the files 2i0d_1580_p4a_tleap_vm2.[crd,top,mol] These are the files
that will be used to run the VM2 calculations.

Compare your results with those provided in the ./reference subdirectory to ensure that
the procedure was successful.

1.2. Ligand Setup

Some remaining protein setup steps require that the AD-81 ligand be already setup, so
next, the full set of ligands are prepared and parameterized. The relevant subdirectories
are:

 hiv1_protease_series_1/setup/ligands/source_files
 hiv1_protease_series_1/setup/ligands/vconf
 hiv1_protease_series_1/setup/ligands/prepare_ligands

1.2.1. Initial 2D structures

Processing with AmberTools requires an input sdf file containing the ligands in 3D, with
all hydrogens present and stereochemistry properly defined with parity values. For this

 134

example, the ligands were first drawn in 2D by a chemical draw program referencing
figures from the published experimental binding affinity article.(49) A 2D mol file was
saved for each ligand.

These 2D structures can be found in the ./source_files subdirectory of ligands/. A simple
python script (mol_2_sdf.py) is used to assemble them into a single sdf file called
umass_1.sdf.

 python mol_2_sdf.py -o umass_1.sdf

To process only a chosen subset of the prepared 2D structures a key file can be used that
contains the names of the ligands, one on each line, to be processed e.g.

 python mol_2_sdf.py -o umass_1.sdf -k ligand_key_5.txt

1.2.2. 2D to 3D conversion

VeraChem’s Vconf program is used to convert these 2D structures to 3D. The relevant
files are found in the vconf/ subdirectory. First, copy over the umass_1.sdf file generated
by the last step, and then execute the run_vconf.sh script to carry out the conversion:

 ./run_vconf.sh &

The resulting 3D structures can be found in the file

 hiv1_protease_series_1/setup/ligands/vconf/umass_1_vconf.sdf

You can compare your results against those provided in the reference/ subdirectory.

1.2.3. Generate partial charges and assign parameters to the ligands

Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones
parameters, while atom partial charges can be generated either by VeraChem’s VCharge
method or by AM1-BCC through AmberTools. The resulting prmtop and inpcrd files are
then converted to the [crd,top,mol] file set used by VM2.

The prepareLigands.pyc script automates this process. First, go to the prepare_ligands
directory

 hiv1_protease_series_1/setup/ligands/prepare_ligands

then copy over the 3D sdf file

 cp ../source_files/umass_1.sdf .

Then, to execute the script choosing VCharge partial atomic charges type:

 ./run_prepareLigands_vcharge.sh &

 135

and to assign charge using AM1-BCC type:

 ./run_prepareLigands_am1-bcc.sh &

While VCharge takes less than a minute for the set of 28 ligands, generation of AM1-
BCC partial charges requires a QM calculation, which can take a considerable amount of
time, e.g., approximately 3 hours on a Xeon E5-2667, 3.2GHz cpu.

You can compare your results against those in the reference subdirectories.

1.3. Define fixed and mobile protein atoms

The choice of the included mobile and fixed protein atoms can have a significant impact
on the final binding energy predictions produced by the VM2 method. VeraChem
recommends inclusion of enough mobile atoms to capture relevant aspects such as loop
movement on binding, while avoiding inclusion of large numbers of atoms as mobile,
which are effectively spectators, so as to keep calculations manageable with respect to
turnover times, and also minimize the occurrence of spurious minima that sometimes
occur due to force field inadequacies.

A process for defining mobile and fixed atoms for subsequent free energy calculations is
now described.

1.3.1. Generate co-crystalized ligand based AD-81 conformation

First, go to the directory

 setup/define_fixed_and_mobile_atoms/1_gen_coxtal_ligand_conf

Next, generate a conformation of the co-crystalized ligand AD-81 to use as the reference
coordinates to carve out the mobile and fixed atoms in subsequent steps. This
is achieved by 'snapping' scaffold atoms from the AD-81 structure generated
in Step 2 above, to the corresponding positions of the co-Xtal AD-81 scaffold
atoms in the 2I0D PDB file i.e. scaffold atoms in the file ad_81_from_2i0d.pdb
generated in Step 1.2.2

The required files are:

ad_81_pdbsnap_confs.inp : VM2 input file
ad_81.crd : coordinate file generated in Section 1.2.3.
ad_81.top : topology/parameter file fin Section 1.2.3.
ad_81.mol : mol file generated in Section 1.2.3.
ad_81_from_2i0d.pdb : reference ad_81 coordinates from Section 1.1.2.

Generate the AD-81 conformations by typing:

 ./runvm2.bsh >& runvm2.log

 136

The output of interest is the file:

 ad_81.confsearch_rank1.crd

which contains the coordinates of lowest energy AD-81 conformer ‘snapped’ to the co-
crystalized ligand scaffold atoms. The coordinate file is used in the next step.

1.3.2. Relax all hydrogen atoms in the system

To relieve close contacts that can occur on hydrogen atom placement, all hydrogen atom
positions in the protein and AD-81 ligand are optimized according to the force field
energy function.

Go to the directory

 setup/define_fixed_and_mobile_atoms/2_opt_all_protein_h

then copy the file required from last step and rename it:

 cp ../1_gen_coxtal_ligand_conf/ad_81.confsearch_rank1.crd ad_81_snap2pdb.crd

The required files for this step are:

2i0d_1580_p4a_tleap_hopt.inp : VM2 package input file for H atom optimization
ad_81_from_2i0d.pdb : reference ad_81 coordinates from Section 1.1.2.

2i0d_1580_p4a_tleap_vm2.crd | Protein coordinates, parameters etc.
2i0d_1580_p4a_tleap_vm2.top <--| generated by Section 1.1. above.
2i0d_1580_p4a_tleap_vm2.mol | Copied directly from ./protein

ad_81_snap2pdb.crd | ad_81_snap2pdb.crd is the just generated
ad_81.top <---| ad_81.confsearch_rank1.crd copied and
ad_81.mol | renamed. The top and mol files are as in 1.3.1.

Relax all hydrogen atom positions by typing:

 ./runvm2.bsh >& runvm2.log

The outputs of interest are the files

 2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd
 ad_81_snap2pdb.geomopt_rank1.crd

which contain the lowest energy coordinates of the protein and ligand AD-81 after
hydrogen atom optimization. These coordinates are used in the next step.

1.3.3. Distance based generation of real/live set

 137

Carve out a mobile and fixed set of protein atoms. VM2 uses so-called real and live
sets, where the 'real' set are all the atoms included in the calculation (mobile and
fixed) and the 'live' set is the subset of the 'real' set that is mobile. In this step,
the VM2 package is used to carve out a 'real' set that comprises all residues that have
an atom within 7 Angstoms any atom of the supplied AD-81 ligand coordinates, and a
'live' set of all protein atoms within 5 Angstoms of any atom of the supplied AD-81
ligand coordinates.

Go to the directory

 setup/define_fixed_and_mobile_atoms/ 3_dist_based_real_live_set

then copy and rename the required files from the last step:

 cp ../2_opt_all_protein_h/2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd
 2i0d_1580_p4a_tleap_vm2_opth.crd

 cp ../2_opt_all_protein_h/ad_81_snap2pdb.geomopt_rank1.crd
ad_81_snap2pdb_opth.crd

The required files for this step are:

2i0d_1580_p4a_tleap_genlivereal.inp <--- VM2 package input file for generation of
 'real' atom set of all atoms within 7
 Angstroms of any atom in the supplied AD-
 81 ligand crd, and a 'live' atom set within 5
 Angstroms.

 2i0d_1580_p4a_tleap_vm2_opth.crd | The crd file is the just generated
 2i0d_1580_p4a_tleap_vm2.top <--| 2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd
 2i0d_1580_p4a_tleap_vm2.mol | renamed. The top and mol are unchanged.

 ad_81_snap2pdb_opth.crd | ad_81_snap2pdb_opth.crd is the just generated
 ad_81.top <---| ad_81_snap2pdb.geomopt_rank1.crd from above
 ad_81.mol | renamed. The top and mol files are unchanged.

Generate the real and live sets by typing:

 ./runvm2.bsh >& runvm2.log

The following output files allow you to visualize the ‘live’ set produced:

2i0d_1580_p4a_tleap_genlivereal.mol2 <--Load into visualizer to see live set produced.
2i0d_1580_p4a_tleap_genlivereal.pdb
2i0d_1580_p4a_tleap_genlivereal.sdf

To see the 'real' set of atoms defined in by these distance cutoffs, run the same
calculation with the input file 2i0d_1580_p4a_tleap_genlivereal.inp changed to output
'real' atoms:

 138

atomsToOutput
real

Generated output files required for running VM2:

2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt <--- This file contains the atom
 numbers of the live and real
 atoms generated by the
 applied distance cutoffs.

Once you are happy with the defined real/live sets copy the protein data files required for
VM2 runs directly into the directory define_fixed_and_mobile_atoms/ i.e.

 cp 2i0d_1580_p4a_tleap_vm2.mol ../.
 cp 2i0d_1580_p4a_tleap_vm2_opth.crd ../.
 cp 2i0d_1580_p4a_tleap_vm2.top ../.
 cp 2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt ../2i0d_5_7_live_real.txt

NOTE: mandatory renaming of 2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt
to include the text “live_real”

The setup stage is now complete.

2. Run Calculations

The next step is to run the protein-ligand, protein, and ligand, free energy calculations.
The relevant directories and readme file are:

 hiv1_protease_series_1/run/1_ligand_confgen
 hiv1_protease_series_1/run/2_vm2_runs
 hiv1_protease_series_1/run/README.runvm2

Optionally, ligand conformations can be pre-generated in /1_ligand_confgen and used to
seed the VM2 calculations in /2_vm2_runs.

2.1. Generation of Ligand Starting Conformations

Two types of pre-generated ligand conformations can be utilized in this example. One is
‘snapped’ conformations, where atoms in each ligand common to a, for example, co-
crystalized ligand are, with an applied guiding force, superimposed, while conformational
space of the remaining atoms is sampled. The other is randomly orientated conformations
of the ligand, suitable for when no pose information is known, only the location of the
binding site.

2.1.1. Example run

 139

Go to the directory

 run/1_ligand_confgen

This directory contains a python script to generate run directories for conformer
generation, and a python script to run the conformer generation calculations. Example
usage is as follows:

 python build_ligand_start_conf_dirs.py -t ad_81_from_2i0d.pdb

will first populate the directories

 1_ligand_confgen/gen_ligand_start_confs_snap

 1_ligand_confgen/gen_ligand_start_confs_rndm

with the required subdirectories, input files, and data files to run. Then the following
command

 python run_ligand_confs_gen.py -r slurm

will step through all these subdirectories, generating slurm scripts, and submitting the
calculations to the batch queue. See Section 2.1.3 below for additional submission
options through the -r flag.

Note: Requirements for this example run are:

ad_81_from_2i0d.pdb <--- must be present in /setup/ligands/prepareLigands

scaffold_mapping_wkey.txt <--- must be present in the current directory and contain
 the mapping of each ligand onto the reference
 ligand

2.1.2. Options available for building conformer generation directories

The python script build_ligand_start_conf_dirs.py can take a number of arguments
for non-default control the source of the system data etc.:

 -d or --data reference : Populate 'input_data' directory using the
 data in the setup 'reference' directories
 e.g. /setup/ligands/prepareLigands/reference,
 and subsequently build the run directories
 with this data.

 new : Populate 'input_data' directory using the
 new data in the setup directories
 e.g. /setup/ligands/prepareLigands,
 and subsequently build the run directories
 with this data. (Default behavior.)

 140

 reuse : Reuse the data from an already populated
 'input_data' directory.

 -s or --startconfs random : Make a run directory for each ligand
 in the series for generation of ligand
 conformers in random orientations and
 with their center of geometry (COG) placed
 at a template ligand's COG.

 snap : Make a run directory for each ligand
 in the series for generation of ligand
 conformers where scaffold atoms are
 'snapped' to corresponding template ligand
 scaffold atoms (via applied harmonic
 potentials).

 all : Make both of the above run directories.
 (Default behavior.)

 -t or --template 'template_filename' : Name of file containing template ligand
 coordinates e.g. co-xtal ligand or
 previously docked ligand. Required unless
 '-d reuse' option set.

 -c or --clear input : Delete the contents of 'input_data' directory.

 rundirs : Delete the contents of the run directories
 'gen_ligand_start_confs_rndm' and
 'gen_ligand_start_confs_snap'.

 all : Delete content from the 'input_data' directory
 and the run directories.

Example usage:

 python build_ligand_start_conf_dirs.py -c rundirs -d reuse

This will clear the contents of previously generated run directories and use the data
already present in ./input_data to regenerate the run directories i.e. data will not be taken
from the setup directories in this case.

2.1.3. Options available for running conformer generation

The python script run_ligand_confs_gen.py can take a number of arguments:

 141

 -s or --startconfs random : Step through each ligand directory in
 /gen_ligand_start_confs_rndm and
 submit a calculation for generation of ligand
 conformers in random orientations and
 with their center of geometry (COG) placed
 at a template ligand's COG.

 snap : Step through each ligand directory in
 gen_ligand_start_confs_snap and
 submit a calculation for generation of ligand
 conformers where scaffold atoms are
 'snapped' to corresponding template ligand
 scaffold atoms (via applied harmonic
 potentials).

 all : Carry out both sets of calculations.
 (Default behavior.)

 -r or --runscript bsh : Generate and use bash shell scripts for submission
 of each calculation. (Default behavior.)

 csh : Generate and use c-shell scripts for submission
 of each calculation.

 pbs : Generate a pbs script for submission of each
 calculation to a queue.

 slurm : Generate a slurm script for submission of each
 calculation to a queue.

 -q or --partition 'queue name' : For pbs and slurm run scripts, the name of the
 queue or partition if the default queue is not
 being used.

 -p or --prepmode : If present the run scripts are generated and placed
 in every directory, but the calculations are not
 submitted.

2.2. Protein-ligand calculations

Two main types of VM2 protein-ligand free energy calculation are available. One is
regular VM2, which carries out iterative rounds of conformational searching until
convergence; the other type carries out geometry optimizations of protein-ligand
conformations constructed from ligand conformers read-in and processes them for free
energy. The latter is much faster, but much less exhaustive in terms of sampling
conformational space. In combination, there are three ways to seed these two VM2

 142

calculation types with ligand conformers: multiple conformers with selected atoms
‘snapped’ to a reference ligand – see Section 2.1. above; multiple conformers randomly
orientated in space, but placed at the location of the binding site – see Section 2.1. above,
and a single conformer, based on the position and geometry in which it was prepared
originally. This provides for six different overall VM2 calculation schemes, which cover
various types of use scenarios.

2.2.1. Example run

Go to the directory

 run/2_vm2_runs

This directory contains a python script to generate run directories for protein-ligand VM2
free energy calculations, and a python script to step through the directories and run the
calculations. Example usage is as follows:

 python build_vm2_run_dirs.py -t ad_81_from_2i0d.pdb

will first populate the following six directories, which cover the calculation types
described above, with the required subdirectories, input files, and data files to run.

 /2_vm2_runs/fast_vm2_snap
 /2_vm2_runs/fast_vm2_rndm
 /2_vm2_runs/fast_vm2_single
 /2_vm2_runs/vm2_snap
 /2_vm2_runs/vm2_rndm
 /2_vm2_runs/vm2_single

Note: For “_snap” and “_rndm” types, the corresponding pre-generation of ligand
conformers – Section 2.1. - must already have occurred.

Then the following command:

 python run_vm2_calculations.py -s snap -v fast -r slurm

will step through the subdirectories of /2_vm2_runs/fast_vm2_snap, generating slurm
scripts, and submitting the calculations to the batch queue. Similarly, any of the other five
calculations types may be run by setting the appropriate flags – see Section 2.2.2 below.
See Section 2.2.3 below for additional submission options through the -r flag.

2.2.2. Options available for building VM2 directories

The python script build_vm2_run_dirs.py can take a number of arguments
for non-default control of the source of the system data etc.:

 -d or --data reference : Populate 'input_data' directory using the
 data in the setup 'reference' directories
 e.g. /setup/ligands/prepareLigands/reference and

 143

 /setup/define_fixed_and_mobile_atoms/reference,
 and the ligand start conformer generation
 reference directory /run/1_ligand_confgen/reference
 and subsequently build the run directories
 with this data.

 new : Populate 'input_data' directory using the new data in the
 setup directories e.g. /setup/ligands/prepareLigands and
 /setup/define_fixed_and_mobile_atoms/
 and the ligand start conformer generation directories
 /run/1_ligand_confgen/gen_ligand_start_confs_rndm
 and /run/1_ligand_confgen/gen_ligand_start_confs_snap
 and subsequently build the run directories
 with this data. (Default behavior.)

 reuse : Reuse the data from an already populated
 'input_data' directory.

 -s or --startconfs random : Requests run directory set up for VM2 free energy
 calculations where randomly oriented ligand conformers
 are placed in the active site and are used to generate
 starting protein-ligand conformations.

 snap : Requests run directory set up for VM2 free energy
 calculations where ligand conformers in which scaffold
 atoms have been 'snapped' to corresponding scaffold
 atoms of a template ligand (e.g. co-xtal ligand) are
 used to generate starting protein-ligand conformations.

 single : Requests run directory set up for VM2 free energy
 calculations where a single ligand starting conformation
 and placement is used based on the supplied ligand .crd
 file coordinates. The placement can be adjusted if a
 template ligand is supplied and the place ligand flag set;
 see -t, --template and -p, --placelig below. Only used a
 non-adjusted ligand .crd if you prepared the ligand in a
 very good placement and pose in the receptor binding site.

 all : Requests both types of directory to be set up.
 (Default behavior.)

 -t or --template 'template_filename' : Name of file containing template ligand
 coordinates e.g. co-xtal ligand or
 previously docked ligand. Could simply be
 coordinates that signifiy the loacation of
 the binding site. Not required unless
 random start conformers are in use or the
 place ligand option just below is set.

 144

 -p or --placelig tcog : Place ligand .crd coordinates center of geometry
 at template ligand's center of geometry.

 -c or --clear input : Delete the contents of 'input_data' directory.

 rundirs : Delete the contents of the run directories.

 all : Delete content from the 'input_data' directory
 and the run directories.

 -v or --vm2type regular : Requests run directory set up for regular VM2
 protein-ligand free energy calculations, which
 carry out extensive conformational searching.

 fast : Requests run directory set up for fast VM2
 protein-ligand free energy calculations, which
 calculate free energies via geometry optimizing
 protein-ligand conformations generated from
 read-in ligand conformers previously snapped to
 a template scaffold.

 all : Requests set up for both types of VM2 calculation.

 -k or --keyfile 'ligand_key_filename' : Name of text file containing the subset of
 ligands in the series - one on each line (see
 ligand_key_5.txt.)

2.2.3. Options available for running VM2 calculations

The python script run_ligand_confs_gen.py can take a number of arguments:

 -s or --startconfs random : Requests that VM2 free energy calculations are run
 for the series where randomly oriented ligand conformers
 are placed in the active site and are used to generate
 starting protein-ligand conformations.

 snap : Requests that VM2 free energy calculations are run
 for the series where ligand conformers in which scaffold
 atoms have been 'snapped' to corresponding scaffold
 atoms of a template ligand (e.g. co-xtal ligand) are
 used to generate starting protein-ligand conformations.
 (Default behavior.)

 single : Requests run directory set up for VM2 free energy
 calculations where a single ligand starting conformation

 145

 and placement is used based on the supplied ligand .crd
 file coordinates. (See above.)

 all : Requests all types of run be carried out.

 -r or --runscript bsh : Generate and use bash shell scripts for submission
 of each calculation. (Default behavior.)

 csh : Generate and use c-shell scripts for submission
 of each calculation.

 pbs : Generate a pbs script for submission of each
 calculation to a queue.

 slurm : Generate a slurm script for submission of each
 calculation to a queue.

 -q or --partition 'queue name' : For pbs and slurm run scripts, the name of the
 queue or partition if the default queue is not
 being used.

 -p or --prepmode : If present the run scripts are generated and placed
 in every directory, but the calculations are not
 submitted.

 -v or --vm2type regular : Requests regular VM2 protein-ligand free energy
 calculations for the series, which carry out
 extensive conformational searching.

 fast : Requests fast VM2 VM2 protein-ligand free energy
 calculations for the series, which calculate
 free energies via geometry optimizing
 protein-ligand conformations generated from
 read-in ligand conformers snapped to a template
 scaffold. (Default behavior.)

 all : Requests both types of VM2 calculation are run for
 the series.

 -i or --mpiprocs n (integer) : Sets the number of MPI processes to run. Currently
 all processes must run on the same node - though
 hand editing of run scripts can remove this restriction.
 The default is 8.

 -g or --gpu : If present requests use of CUDA enabled VM2
 executable.

 146

 -o or --ompthreads 1 : If -g not set results in MPI parallelism only.
 Enforced for ligand only runs.

 2 : If set will result in MPI+OpenMP run (8 MPI processes
 (default), 2 OpenMP threads per process). If -g also set
 will result in MPI+OpenMP+CUDA parallelism.

 4 : Same as previous, but 4 OpenMP threads.

 -m or --molsystems complexes+ligands |
 |
 complexes+protein |
 |
 protein+ligand |
 |
 complexes |----> Run subset of the moleculer system
 | types.
 |
 ligands |
 |
 protein |

 all : Default. Run ligands, complexes, and
 protein.

Example usage:

 nohup python run_vm2_calculations.py -g -o 2

Run default fast-snap set of calculations (fast_vm2_snap directory) with 8 MPI process
calculations for ligand calculations, but MPI+OpenMP+CUDA calculations for the
complexes and the protein.

This run utilizes 8 MPI processes with 1 GPU per MPI process and 2 OpenMP
threads per MPI process. It therefore requires 16 compute cores and 8 GPUs.

3. Results Collection

When the protein-ligand, protein, and ligand VM2 free energy calculations for the
complete ligand series have completed, the binding free energies may then be calculated,
and the formatted files, e.g., .mol2, .pdb, .sdf, containing the associated molecular
structures collected.

The relevant directories and readme file are:

 hiv1_protease_series_1/results

 147

 hiv1_protease_series_1/results/conformers
 hiv1_protease_series_1/results/README.results

3.1. Generate binding free energy spreadsheets and collect conformer files

Go to the directory

 hiv1_protease_series_1/results

To generate spreadsheets and collect molecule conformer files for the “fast_vm2_snap”
calculations from Section 2.2.1 type:

 python create_vm2_summaries.py -c fast_vm2_snap -n 2i0d -l ad_81

Requirements:

File containing experimental data: experimental_data.csv

The filename must contain “experimental_data”.
The format is <proteinname_ligandname>, <value> e.g.

2i0d_ad_12,-9.367
2i0d_ad_17,-14.203
2i0d_ad_23,-11.559
2i0d_ad_24,-10.126
2i0d_ad_32,-10.337
2i0d_ad_33,-12.458
:

Output spreadsheets:

 results/2i0d_fast_vm2_snap_complex.csv
 results/2i0d_fast_vm2_snap_protein.csv
 results/fast_vm2_snap_ligand.csv
 results/2i0d_fast_vm2_snap_SUMMARY.csv

The last of these contains the binding free energies.

Output conformer files:

For the protein, each ligand, and each protein-ligand complex, formatted files (e.g. mol2,
pdb, sdf, xyz) containing the lowest energy conformer, and the eight lowest energy
conformers are written to:

 results/conformers/fast_vm2_rndm/complexes
 results/conformers/fast_vm2_rndm/ligands
 results/conformers/fast_vm2_rndm/protein

3.2. Results generation options

 148

For the script create_vm2_summaries.py the following two commandline arguments are
mandatory with the following options:

 -c or --calctype fast_vm2_snap : Identify the calculation type
 to collect and summarize run
 fast_vm2_rndm data for.

 fast_vm2_single

 vm2_snap

 vm2_rndm

 vm2_single

 -n or --receptorname : Provide the name of the receptor
 e.g. for this case the protein
 is named “2i0d”

There are two additional non mandatory arguments:

 -l or --refligand : Provide the name of the reference
 ligand to be used in relative binding
 affinity calculation i.e. for Delta(DeltaG)
 The default is no reference.

 -g or --getconfs <number of confs> : The number of conformers to keep in the
 extracted formated conformer files e.g.
 .sdf, .mol2, .pdb. The default is 8 plus
 a set of formatted files each with the
 lowest energy conformer.

 149

XI. Host-guest example: Sampl6 Octa-acids and guests

This is a full example of setup, execution of calculations, and collection of binding
affinity results for the host molecules octa-acid (OA) and methylated octa-acid (TEMOA)
and series of eight guests (ligands), for a total of sixteen complexes. The data sets –
starting SD files and experimental binding affinities - are taken from the Sampl6
challenge repository. (50)

NOTE: You will need a working installation of AmberTools with the $AMBERHOME
environment variable set to carry out the full procedure as described below. Please see
http://ambermd.org/ to download AmberTools and for its documentation.

To proceed, first, untar the examples file vcCompChem_2_8_2_examples.tar.bz2, which
is provided with the package:

tar xvf vcCompChem_2_8_2_examples.tar.bz2

The main directory for this example is:
 vcCompChem_2_8_2_examples/host_guest/Sampl6/oa_gaff_vcharge

it contains a readme file: README.sampl6.oa , which describes the overall process,
stepping through the following three directories in turn

Sampl6/oa_gaff_vcharge/setup
Sampl6/oa_gaff_vcharge/run
Sampl6/oa_gaff_vcharge/results

An outline of each step now follows. You can skip the setup section by going straight to
Section 2. and making use of the “-d reference” option, described in Sections 2.1.2. and
2.2.2.

1. Setup

The procedure starts with setup, namely structure preparation, typing, and charge
assignment of the host and guest molecules. A step-by-step description of the setup
process now follows. Also, see:

 Sampl6/oa_gaff_vcharge/setup/README.setup

1.1. Host Setup

The relevant subdirectories are:

 Sampl6/oa_gaff_vcharge/setup/hosts/source_files
 Sampl6/oa_gaff_vcharge/setup/hosts/prepareHosts

https://github.com/MobleyLab/SAMPL6
http://ambermd.org/

 150

1.1.1. Source files

The /source_files directory contains .sdf, .mol2, and .pdb files for the host molecules
octa-acid (OA) and methylated octa-acid (TEMOA) taken from the Sampl6 challenge
repository. It also contains .mol files, derived from the .sdf files, along with a script
mol_2_sdf.py to combine these .mol files into a single SD file, oa_hosts.sdf, for
processing in /prepareHosts.

 python mol_2_sdf.py oa_hosts.sdf

1.1.2. Generate partial charges and assign parameters

Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones
parameters, while atom partial charges can be generated either by VeraChem’s VCharge
method or by AM1-BCC through AmberTools – for this example VCharge will be used.
The resulting prmtop and inpcrd files are then converted to the [crd,top,mol] file set used
by VM2.

The prepareLigands.pyc script (it can be used for host molecules as well as ligands)
automates this process. First, go to the prepareHosts directory

 Sampl6/oa_gaff_vcharge/setup/hosts/prepareHosts

then copy over the host sdf file just generated

 cp ../source_files/oa_hosts.sdf .

Then, to execute the script choosing VCharge partial atomic charges type:

 ./run_prepareHosts.sh &

This script contains the command line:

 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc -charge_method
 vcharge oa_hosts.sdf >& run_prepareHosts.out &

To assign charge using AM1-BCC instead remove the charge method argument:

 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc oa_hosts.sdf >&
 run_prepareHosts.out &

You can compare your results against those in the reference subdirectories.

1.2. Ligand Setup

The relevant subdirectories are:

 Sampl6/oa_gaff_vcharge/setup/ligands/source_files

 151

 Sampl6/oa_gaff_vcharge/setup/ligands/prepareLigands

The steps basically mirror those just described for the host molecules.

1.2.1. Source files

The /source_files directory contains .sdf and .mol2 files for the ligand molecules OA-G0
to OA-G7 taken from the Sampl6 challenge repository. It also contains a script
combine_sdfs.py to combine the SD files into a single SD file, oa_ligands.sdf, for
processing in /prepareLigands.

 python combine_sdfs.py oa_ligands.sdf

1.2.2. Generate partial charges and assign parameters

Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones
parameters, while atom partial charges can be generated either by VeraChem’s VCharge
method or by AM1-BCC through AmberTools – for this example VCharge will be used.
The resulting prmtop and inpcrd files are then converted to the [crd,top,mol] file set used
by VM2.

The prepareLigands.pyc script automates this process. First, go to the prepareLigands
directory

 Sampl6/oa_gaff_vcharge/setup/hosts/prepareLigands

then copy over the ligand sdf file just generated

 cp ../source_files/oa_ligands.sdf .

Then, to execute the script choosing VCharge partial atomic charges type:

 ./run_prepareLigands.sh &

This script contains the command line:

 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc -charge_method
 vcharge oa_ligands.sdf >& run_prepareLigands.out &

To assign charge using AM1-BCC instead remove the charge method argument:

 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc oa_ligands.sdf
>& run_prepareLigands.out &

You can compare your results against those in the reference subdirectories.

The setup stage is now complete.

 152

2. Run Calculations

The next step is to run the host-guest, host, and ligand, free energy calculations. The
relevant directories and readme file are:

 Sampl6/oa_gaff_vcharge/run/1_ligand_confgen
 Sampl6/oa_gaff_vcharge/run/2_vm2_runs
 Sampl6/oa_gaff_vcharge/run/README.runvm2

Ligand conformations can be pre-generated in /1_ligand_confgen and used to seed the
VM2 calculations in /2_vm2_runs.

2.1. Generation of Ligand Starting Conformations

Randomly orientated conformations of the ligand are generated, which are read-in to seed
the actual host-guest VM2 free energy calculations.

2.1.1. Example run

Go to the directory

 run/1_ligand_confgen

This directory contains a python script to generate run directories for conformer
generation, and a python script to run the conformer generation calculations. Example
usage is as follows:

 python build_ligand_start_conf_dirs.py

will first populate the directory

 1_ligand_confgen/gen_ligand_start_confs_rndm

with the required subdirectories, input files, and data files to run. Then the following
command

 python run_ligand_confs_gen.py -r slurm

will step through all these subdirectories, generating slurm scripts, and submitting the
calculations to the batch queue. See Section 2.1.3 below for additional submission
options through the -r flag.

2.1.2. Options available for building conformer generation directories

The python script build_ligand_start_conf_dirs.py can take a number of arguments
for non-default control the source of the system data etc.:

 -d or --data reference : Populate 'input_data' directory using the
 data in the setup 'reference' directories

 153

 e.g. /setup/ligands/prepareLigands/reference,
 and subsequently build the run directories
 with this data.

 new : Populate 'input_data' directory using the
 new data in the setup directories
 e.g. /setup/ligands/prepareLigands,
 and subsequently build the run directories
 with this data. (Default behavior.)

 reuse : Reuse the data from an already populated
 'input_data' directory.

 -c or --clear input : Delete the contents of 'input_data' directory.

 rundirs : Delete the contents of the run directories
 'gen_ligand_start_confs_rndm' and
 'gen_ligand_start_confs_snap'.

 all : Delete content from the 'input_data' directory
 and the run directories.

Example usage:

 python build_ligand_start_conf_dirs.py -c rundirs -d reuse

This will clear the contents of previously generated run directories and use the data
already present in ./input_data to regenerate the run directories i.e. data will not be taken
from the setup directories in this case.

2.1.3. Options available for running conformer generation

The python script run_ligand_confs_gen.py can take a number of arguments:

 -r or --runscript bsh : Generate and use bash shell scripts for submission
 of each calculation. (Default behavior.)

 csh : Generate and use c-shell scripts for submission
 of each calculation.

 pbs : Generate a pbs script for submission of each
 calculation to a queue.

 slurm : Generate a slurm script for submission of each
 calculation to a queue.

 -q or --partition 'queue name' : For pbs and slurm run scripts, the name of the
 queue or partition if the default queue is not
 being used.

 154

 -p or --prepmode : If present the run scripts are generated and placed
 in every directory, but the calculations are not
 submitted.

2.2. Host-guest calculations

Two main types of VM2 host-guest free energy calculation are available. One is regular
VM2, which carries out iterative rounds of conformational searching until convergence;
the other type carries out geometry optimizations of host-guest conformations constructed
from ligand conformers read-in and processes them for free energy. The latter is much
faster, but much less exhaustive in terms of sampling conformational space. In
combination, there are two ways to seed these two VM2 calculation types with ligand
conformers: multiple conformers randomly orientated in space, but placed at the center of
geometry of the host – see Section 2.1. above, and a single conformer, based on the
geometry in which it was prepared originally, and also placed at the center of geometry of
the host. This provides for four different overall VM2 calculation schemes, which cover
various types of use scenarios.

2.2.1. Example run

Go to the directory

 run/2_vm2_runs

This directory contains a python script to generate run directories for host-guest VM2
free energy calculations, and a python script to step through the directories and run the
calculations. Example usage is as follows:

 python build_vm2_run_dirs.py

will first populate the following four directories, which cover the calculation types
described above, with the required subdirectories, input files, and data files to run.

 /2_vm2_runs/fast_vm2_rndm
 /2_vm2_runs/fast_vm2_single
 /2_vm2_runs/vm2_rndm
 /2_vm2_runs/vm2_single

Note: For “_rndm” types, the corresponding pre-generation of ligand conformers –
Section 2.1. - must already have occurred.

Then the following command:

 python run_vm2_calculations.py -s random -v fast -r slurm

will step through the subdirectories of /2_vm2_runs/fast_vm2_snap, generating slurm
scripts, and submitting the calculations to the batch queue. Similarly, any of the other

 155

three calculations types may be run by setting the appropriate flags – see Section 2.2.2
below. See Section 2.2.3 below for additional submission options through the -r flag.

2.2.2. Options available for building VM2 directories

The python script build_vm2_run_dirs.py can take a number of arguments
for non-default control of the source of the system data etc.:

 -d or --data reference : Populate 'input_data' directory using the
 data in the setup 'reference' directories
 e.g. /setup/ligands/prepareLigands/reference,
 and the ligand start conformer generation
 reference directory /run/1_ligand_confgen/reference
 and subsequently build the run directories
 with this data.

 new : Populate 'input_data' directory using the new data in the
 setup directories e.g. /setup/ligands/prepareLigands and
 the ligand start conformer generation directory
 /run/1_ligand_confgen/gen_ligand_start_confs_rndm

 and subsequently build the run directories
 with this data. (Default behavior.)

 reuse : Reuse the data from an already populated
 'input_data' directory.

 -s or --startconfs random : Requests run directory set up for VM2 free energy
 calculations where randomly oriented ligand conformers
 are placed at the host center of geomatry and are used to
 generate starting host-guest conformations.

 single : Requests run directory set up for VM2 free energy
 calculations where a single ligand starting conformation
 is used based on the supplied ligand .crd
 file coordinates. The placement is set as the center of
 geometry of the host molecule.

 all : Requests both types of directory to be set up.
 (Default behavior.)

 -c or --clear input : Delete the contents of 'input_data' directory.

 rundirs : Delete the contents of the run directories.

 all : Delete content from the 'input_data' directory
 and the run directories.

 156

 -v or --vm2type regular : Requests run directory set up for regular VM2
 host-guest free energy calculations, which
 carry out extensive conformational searching.

 fast : Requests run directory set up for fast VM2
 host-guest free energy calculations, which
 calculate free energies via geometry optimizing
 host-guest conformations generated from
 read-in ligand conformers previously generated.

 all : Requests set up for both types of VM2 calculation.

 -k or --keyfile 'ligand_key_filename' : Name of text file containing the subset of
 ligands in the series - one on each line (see
 ligand_key_5.txt.)

2.2.3. Options available for running VM2 calculations

The python script run_ligand_confs_gen.py can take a number of arguments:

 -s or --startconfs random : Requests that VM2 free energy calculations are run
 for the series where randomly oriented ligand conformers
 are placed in the active site and are used to generate
 starting protein-ligand conformations.
 (Default behavior.)

 single : Requests that VM2 free energy calculations are run
 for the series where a single ligand/guest conformation
 is placed at the host's center of geometry generating
 a single starting host-guest conformation.

 all : Requests both types of run be carried out.

 -r or --runscript bsh : Generate and use bash shell scripts for submission
 of each calculation. (Default behavior.)

 csh : Generate and use c-shell scripts for submission
 of each calculation.

 pbs : Generate a pbs script for submission of each
 calculation to a queue.

 slurm : Generate a slurm script for submission of each
 calculation to a queue.

 157

 -q or --partition 'queue name' : For pbs and slurm run scripts, the name of the
 queue or partition if the default queue is not
 being used.

 -p or --prepmode : If present the run scripts are generated and placed
 in every directory, but the calculations are not
 submitted.

 -v or --vm2type regular : Requests regular VM2 protein-ligand free energy
 calculations for the series, which carry out
 extensive conformational searching.

 fast : Requests fast VM2 VM2 protein-ligand free energy
 calculations for the series, which calculate
 free energies via geometry optimizing
 protein-ligand conformations generated from
 read-in ligand conformers snapped to a template
 scaffold. (Default behavior.)

 all : Requests both types of VM2 calculation are run for
 the series.

 -g or --gpu : If present requests use of CUDA enabled VM2
 executable.

 -o or --ompthreads 1 : If -g not set results in MPI parallelism only.
 Enforced for ligand only runs.

 2 : If set will result in MPI+OpenMP run (8 MPI processes
 (default), 2 OpenMP threads per process). If -g also set
 will result in MPI+OpenMP+CUDA parallelism.

 -m or --molsystems complexes+ligands |
 |
 complexes+hosts |
 |
 hosts+ligand |
 |
 complexes |----> Run subset of the moleculer system
 | types.
 |
 ligands |
 |
 hosts |

 158

 all : Default. Run ligands, complexes, and
 hosts.

Example usage:

 nohup python run_vm2_calculations.py -g -o 2

Run default fast-random set of calculations (fast_vm2_randm directory) with 8 MPI
process calculations for ligand calculations, but MPI+OpenMP+CUDA calculations for
the complexes and the hosts.

This run utilizes 8 MPI processes with 1 GPU per MPI process and 2 OpenMP
threads per MPI process. It therefore requires 16 compute cores and 8 GPUs.

3. Results Collection

When the host-guest (ligand), host, and ligand VM2 free energy calculations for the
complete ligand series have completed, the binding free energies may then be calculated,
and the formatted files, e.g., .mol2, .pdb, .sdf, containing the associated molecular
structures collected.

The relevant directories and readme file are:

 Sampl6/oa_gaff_vcharge /results
 Sampl6/oa_gaff_vcharge /results/conformers
 Sampl6/oa_gaff_vcharge /results/README.results

3.1. Generate binding free energy spreadsheets and collect conformer files

Go to the directory

 Sampl6/oa_gaff_vcharge /results

To generate spreadsheets and collect molecule conformer files for the “fast_vm2_rndm”
calculations from Section 2.2.1 type:

 python create_vm2_summaries.py -c fast_vm2_rndm -l OA-G0

Requirements:

File containing experimental data: sampl6_oa_experimental_data.txt

The filename must contain the text “experimental_data”.
The format is <hostname_ligandname>, <value> e.g.

OA_OA-G0, -5.68
OA_OA-G1, -4.65
OA_OA-G2, -8.38

 159

OA_OA-G3, -5.18
OA_OA-G4, -7.11
:

Output spreadsheets:

 results/OA_TEMOA _fast_vm2_rndm_complex.csv
 results/OA_TEMOA _fast_vm2_snap_host.csv
 results/fast_vm2_rndm_ligand.csv
 results/OA_TEMOA _fast_vm2_rndm_SUMMARY.csv

The last of these contains the binding free energies.

Output conformer files:

For the protein, each ligand, and each host-ligand complex, formatted files (e.g. mol2,
pdb, sdf, xyz) containing the lowest energy conformer, and the eight lowest energy
conformers are written to:

 results/conformers/fast_vm2_rndm/complexes
 results/conformers/fast_vm2_rndm/ligands
 results/conformers/fast_vm2_rndm/hosts

3.2. Results generation options

For the script create_vm2_summaries.py the following commandline argument is
mandatory with the following options:

 -c or --calctype fast_vm2_rndm : Identify the calculation type
 to collect and summarize run
 fast_vm2_single data for.

 vm2_rndm

 vm2_single

There are three additional non mandatory arguments:

 -n or --receptorname : Provide the name of the receptor
 e.g. for this case the hosts
 are named “OA” and “TEMOA”
 This is useful if more than one host
 and separate summary files are required
 for each host or if you want the results
 files labeled with the host name.

 -l or --refligand : Provide the name of the reference
 ligand to be used in relative binding

 160

 affinity calculation i.e. for Delta(DeltaG)
 The default is no reference.

 -g or --getconfs <number of confs> : The number of conformers to keep in the
 extracted formated conformer files e.g.
 .sdf, .mol2, .pdb. The default is 8 plus
 a set of formatted files each with the
 lowest energy conformer.

 161

XII. VeraChem file formats

1. VeraChem’s topology/parameter file (.top) format examples

The .top file format specification is described in detail in Section II. The following is a
specific example for a small (ligand) molecule and the CHARMM force field – note the
columns 8 and 9 in the atom block, which, specific to CHARMM, contain van der Waals
parameters for 1-4 interactions.

 !NTITLE 1
 !NATOM: 23
 1 C6R 12.01100 -0.11100 -0.05000 2.04000 -0.10000 1.76000
 2 C6R 12.01100 -0.11100 -0.05000 2.04000 -0.10000 1.76000
 3 C6R 12.01100 -0.11300 -0.05000 2.04000 -0.10000 1.76000
 4 C6R 12.01100 -0.11300 -0.05000 2.04000 -0.10000 1.76000
 5 C6R 12.01100 -0.01000 -0.05000 2.04000 -0.10000 1.76000
 6 C6R 12.01100 0.08800 -0.05000 2.04000 -0.10000 1.76000
 7 C 12.01100 0.59800 -0.14100 1.87000
 8 CT 12.01100 -0.25800 -0.09030 1.80000 -0.10000 1.75000
 9 CT 12.01100 0.03700 -0.09030 1.80000 -0.10000 1.75000
 10 NP 14.00670 -0.69000 -0.09000 1.83000 -0.10000 1.63000
 11 O 15.99940 -0.51600 -0.15910 1.55000 -0.20000 1.36000
 12 OS 15.99940 -0.35100 -0.15910 1.60000 -0.20000 1.36000
 13 HA 1.00800 0.10900 -0.04200 1.33000
 14 HA 1.00800 0.10900 -0.04200 1.33000
 15 HA 1.00800 0.10900 -0.04200 1.33000
 16 HA 1.00800 0.10900 -0.04200 1.33000
 17 HA 1.00800 0.09100 -0.04200 1.33000
 18 HA 1.00800 0.09100 -0.04200 1.33000
 19 HA 1.00800 0.09100 -0.04200 1.33000
 20 HA 1.00800 0.08700 -0.04200 1.33000
 21 HA 1.00800 0.08700 -0.04200 1.33000
 22 H 1.00800 0.33400 -0.04980 0.80000
 23 H 1.00800 0.33400 -0.04980 0.80000
 !NBOND: 23
 1 3 880.000 1.38300 C6R C6R
 1 5 880.000 1.38300 C6R C6R
 1 13 740.000 1.08000 C6R HA
 2 4 880.000 1.38300 C6R C6R
 2 5 880.000 1.38300 C6R C6R
 2 14 740.000 1.08000 C6R HA
 3 6 880.000 1.38300 C6R C6R
 3 15 740.000 1.08000 C6R HA
 4 6 880.000 1.38300 C6R C6R
 4 16 740.000 1.08000 C6R HA
 5 7 772.000 1.46000 C6R C
 6 10 780.000 1.35500 C6R NP
 7 11 1280.000 1.22500 C O
 7 12 700.000 1.31900 C OS
 8 9 536.000 1.52900 CT CT
 8 17 680.000 1.09000 CT HA
 8 18 680.000 1.09000 CT HA
 8 19 680.000 1.09000 CT HA
 9 12 786.000 1.42000 CT OS
 9 20 680.000 1.09000 CT HA
 9 21 680.000 1.09000 CT HA
 10 22 931.200 1.00000 NP H
 10 23 931.200 1.00000 NP H
 !NTHETA: 37
 3 1 5 140.000 2.094395 C6R C6R C6R
 3 1 13 62.000 2.094395 C6R C6R HA
 5 1 13 62.000 2.094395 C6R C6R HA

 162

 4 2 5 140.000 2.094395 C6R C6R C6R
 4 2 14 62.000 2.094395 C6R C6R HA
 5 2 14 62.000 2.094395 C6R C6R HA
 1 3 6 140.000 2.094395 C6R C6R C6R
 1 3 15 62.000 2.094395 C6R C6R HA
 6 3 15 62.000 2.094395 C6R C6R HA
 2 4 6 140.000 2.094395 C6R C6R C6R
 2 4 16 62.000 2.094395 C6R C6R HA
 6 4 16 62.000 2.094395 C6R C6R HA
 1 5 2 140.000 2.094395 C6R C6R C6R
 1 5 7 140.000 2.094395 C6R C6R C
 2 5 7 140.000 2.094395 C6R C6R C
 3 6 4 140.000 2.094395 C6R C6R C6R
 3 6 10 130.000 2.094395 C6R C6R NP
 4 6 10 130.000 2.094395 C6R C6R NP
 5 7 11 172.000 2.216568 C6R C O
 5 7 12 120.000 1.919862 C6R C OS
 11 7 12 162.000 2.171190 O C OS
 9 8 17 75.000 1.932079 CT CT HA
 9 8 18 75.000 1.932079 CT CT HA
 9 8 19 75.000 1.932079 CT CT HA
 17 8 18 66.000 1.881465 HA CT HA
 17 8 19 66.000 1.881465 HA CT HA
 18 8 19 66.000 1.881465 HA CT HA
 8 9 12 160.000 1.910612 CT CT OS
 8 9 20 75.000 1.932079 CT CT HA
 8 9 21 75.000 1.932079 CT CT HA
 12 9 20 118.000 1.889319 OS CT HA
 12 9 21 118.000 1.889319 OS CT HA
 20 9 21 66.000 1.881465 HA CT HA
 6 10 22 60.000 2.094395 C6R NP H
 6 10 23 60.000 2.094395 C6R NP H
 22 10 23 36.000 2.052507 H NP H
 7 12 9 166.000 2.022837 C OS CT
!NPHI: 46
 5 1 3 6 2.800 2.000 3.142 C6R C6R C6R C6R
 5 1 3 15 3.000 2.000 3.142 C6R C6R C6R HA
 13 1 3 6 3.000 2.000 3.142 C6R C6R C6R HA
 13 1 3 15 2.500 2.000 3.142 HA C6R C6R HA
 3 1 5 2 2.800 2.000 3.142 C6R C6R C6R C6R
 3 1 5 7 3.100 2.000 3.142 X C6R C6R X
 13 1 5 2 3.000 2.000 3.142 C6R C6R C6R HA
 13 1 5 7 3.100 2.000 3.142 X C6R C6R X
 5 2 4 6 2.800 2.000 3.142 C6R C6R C6R C6R
 5 2 4 16 3.000 2.000 3.142 C6R C6R C6R HA
 14 2 4 6 3.000 2.000 3.142 C6R C6R C6R HA
 14 2 4 16 2.500 2.000 3.142 HA C6R C6R HA
 4 2 5 1 2.800 2.000 3.142 C6R C6R C6R C6R
 4 2 5 7 3.100 2.000 3.142 X C6R C6R X
 14 2 5 1 3.000 2.000 3.142 C6R C6R C6R HA
 14 2 5 7 3.100 2.000 3.142 X C6R C6R X
 1 3 6 4 2.800 2.000 3.142 C6R C6R C6R C6R
 1 3 6 10 3.100 2.000 3.142 X C6R C6R X
 15 3 6 4 3.000 2.000 3.142 C6R C6R C6R HA
 15 3 6 10 3.100 2.000 3.142 X C6R C6R X
 2 4 6 3 2.800 2.000 3.142 C6R C6R C6R C6R
 2 4 6 10 3.100 2.000 3.142 X C6R C6R X
 16 4 6 3 3.000 2.000 3.142 C6R C6R C6R HA
 16 4 6 10 3.100 2.000 3.142 X C6R C6R X
 1 5 7 11 1.300 2.000 3.142 O C C6R C6R
 1 5 7 12 0.500 2.000 3.142 X C C6R X
 2 5 7 11 1.300 2.000 3.142 O C C6R C6R
 2 5 7 12 0.500 2.000 3.142 X C C6R X
 3 6 10 22 0.500 2.000 3.142 X C6R NP X
 3 6 10 23 0.500 2.000 3.142 X C6R NP X
 4 6 10 22 0.500 2.000 3.142 X C6R NP X

 163

 4 6 10 23 0.500 2.000 3.142 X C6R NP X
 5 7 12 9 2.500 2.000 3.142 X C OS X
 11 7 12 9 2.500 2.000 3.142 X C OS X
 17 8 9 12 0.150 3.000 0.000 X CT CT X
 17 8 9 20 0.150 3.000 0.000 X CT CT X
 17 8 9 21 0.150 3.000 0.000 X CT CT X
 18 8 9 12 0.150 3.000 0.000 X CT CT X
 18 8 9 20 0.150 3.000 0.000 X CT CT X
 18 8 9 21 0.150 3.000 0.000 X CT CT X
 19 8 9 12 0.150 3.000 0.000 X CT CT X
 19 8 9 20 0.150 3.000 0.000 X CT CT X
 19 8 9 21 0.150 3.000 0.000 X CT CT X
 8 9 12 7 0.100 3.000 0.000 CT CT OS C
 20 9 12 7 0.330 3.000 3.142 X CT OS X
 21 9 12 7 0.330 3.000 3.142 X CT OS X
 !NIMPHI: 8
 1 5 13 3 150.000 0.000 3.142 HA X X C6R
 2 4 14 5 150.000 0.000 3.142 HA X X C6R
 3 6 15 1 150.000 0.000 3.142 HA X X C6R
 4 2 16 6 150.000 0.000 3.142 HA X X C6R
 5 1 7 2 200.000 0.000 3.142 C X X C6R
 6 3 10 4 180.000 0.000 3.142 C6R X X NP
 7 5 12 11 294.000 0.000 3.142 C X X O
 10 22 23 6 180.000 0.000 3.142 C6R X X NP
 !NBFIX: 0
 !NFINAL: 6
 23 23 37 46 8 9999
 !NDON:

2. Definition of protein real/live atom sets

The following provides the format for the file to identify the atoms to include in the
calculation (real atoms), and which of these are mobile (live atoms). See Section VIII 2.

#total no. of atoms in the protein
numberOfAtoms
3137
#no of flexible atoms
numberOfLiveAtoms
645
#list of flexible atoms
listOfLiveAtoms
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
158
378

 164

379
380
382
 :
 :
2943
2944
2955
3135
3136
3137
#number of real atoms
numberOfRealAtoms
2027
#list of real atoms
listOfRealAtoms
67
68
69
70
71
72
73
74
75
76
 :
 :
3096
3097
3098
3099
3135
3136
3137
#end
end

3. Identify constrained (tethered) atoms sets

The following provides the format for the file to identify sets of atoms to which
constraints are applied. In case shown to sets of atoms are identified, one is a large set of
503 atoms, the other a small set of 4 atoms. The type and strength of the constraints
applied are defined in the .inp file (see Section VIII 14.)

#Constrained atoms information
#numProtein
1
#numLigand
1

#proteinid
1

#setid
1

 165

#numTetheredAtoms
503
#atomList
122
123
124
125
126
127
128
129
130
131
132
133
134
135
267
268
269
270
271
 :
 :
2654
2655
2656

#setid
2
#numTetheredAtoms
4
#atomList
2686
2689
2692
2695

#ligandid
1
#numTetheredAtoms
0
#atomList

#end
end

4. Identify atoms to exclude search drivers

The following provides the format for the file to identify atoms which if present in a
particular search driver results in the exclusion of that driver in the conformational
search. (see Section VIII 7.)

#Excluded Atoms information
#numProtein
1

 166

#numLigand
1

#proteinid
1
#numExcludedAtoms
1066
#atomList
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
 :
 :
2682
2683
2686
2689
2692
2695

#ligandid
1
#numExcludedAtoms
0
#atomList

#end
end

 167

XIII. References

1. W. Chen, M. K. Gilson, S. P. Webb, M. J. Potter, Modeling Protein−Ligand

Binding by Mining Minima. J. Chem. Theory Comput. 6, 3540-3557 (2010).
2. C.-E. Chang, M. K. Gilson, Free Energy, Entropy, and Induced Fit in Host-Guest

Recognition: Calculations with the Second-Generation Mining Minima Algorithm
J. Am. Chem. Soc. 126, 13156-13164 (2004).

3. Y.-m. H. W. C. M. P. C.-e. Chang, W. Chen, M. J. Potter, C.-e. A. Chang,
Insights from Free-Energy Calculations: Protein Conformational Equilibrium,
Driving Forces, and Ligand-Binding Modes. Biophysj 103, 342-351 (2012).

4. M. K. Gilson, J. A. Given, B. L. Bush, J. A. McCammon, The statistical-
thermodynamic basis for computation of binding affinities: A critical review.
Biophys. J. 72, 1047-1069 (1997).

5. M. Mihailescu, M. K. Gilson, On the theory of noncovalent binding. Biophys. J.
87, 23-26 (2004).

6. T. Liu, Y. Lin, X. Wen, R. N. Jorissen, M. K. Gilson, BindingDB: a web-
accessible database of experimentally determined protein-ligand binding
affinities. Nucl. Acid Res. 35, D198-D201 (2007).

7. K. N. Houk, A. G. Leach, S. P. Kim, X. Y. Zhang, Binding affinities of host-
guest, protein-ligand, and protein-transition-state complexes. Ang. Chem. Int. Ed.
42, 4872-4897 (2003).

8. M. V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins.
Chem. Rev. 98, 1875-1917 (1998).

9. M. V. Rekharsky et al., A synthetic host-guest system achieves avidin-biotin
affinity by overcoming enthalpy-entropy compensation. Proceedings of the
National Academy of Sciences of the United States of America 104, 20737-20742
(2007).

10. G. L. Warren et al., A critical assessment of docking programs and scoring
functions. Journal of Medicinal Chemistry 49, 5912-5931 (2006).

11. C.-E. Chang, M. K. Gilson, Tork:Conformational analysis method for molecules
and complexes. J. Comput. Chem. 24, 1987-1998 (2003).

12. C.-E. Chang, M. J. Potter, M. K. Gilson, Calculation of molecular configuration
integrals. J. Phys. Chem. B 107, 1048-1055 (2003).

13. M. J. Potter, M. K. Gilson, Coordinate Systems and the Calculation of Molecular
Properties. J. Phys. Chem. A 106, 563-566 (2002).

14. W. Chen, J. Huang, M. K. Gilson, Identification of symmetries in molecules and
complexes. J. Chem. Inf. Comput. Sci. 44, 1301-1313 (2004).

15. B. R. Brooks et al., CHARMM: A Program for Macromolecular Energy,
Minimization and Dynamics Calculations. J. Comput. Chem. 4, 187-217 (1983).

16. B. R. Brooks et al., CHARMM: The biomolecular simulation program. Journal of
Computational Chemistry 30, 1545-1614 (2009).

17. W. L. Jorgensen, J. Tirado-Rives, The OPLS Potential Function for Proteins.
Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem.
Soc. 110, 1657-1666 (1988).

18. D. A. Pearlman et al., Amber, A Package of Computer-programs for Applying
Molecular Mechanics, Normal-Mode Analysis, Molecular-Dynamics and Free-

 168

Energy Calculations to Simulate the Structural and Energetic Properties of
Molecules. Comput. Phys. Commun. 91, 1-41 (1995).

19. S. J. Weiner et al., A new force-field for molecular mechanical simulation of
nucleic-acids and proteins. Journal of the American Chemical Society 106, 765-
784 (1984).

20. J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case,
Development and testing of a general amber force field. Journal of Computational
Chemistry 25, 1157-1174 (2004).

21. K. Vanommeslaeghe et al., CHARMM General Force Field: A Force Field for
Drug-Like Molecules Compatible with the CHARMM All-Atom Additive
Biological Force Fields. Journal of Computational Chemistry 31, 671-690 (2010).

22. S. L. Mayo, B. D. Olafson, W. A. Goddard III, DREIDING: A generic force field
for molecular simulations. J. Phys. Chem. 94, 8897-8909 (1990).

23. W. L. Jorgensen, D. S. Maxwell, J. TiradoRives, Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic
liquids. Journal of the American Chemical Society 118, 11225-11236 (1996).

24. W. Damm, A. Frontera, J. TiradoRives, W. L. Jorgensen, OPLS all-atom force
field for carbohydrates. Journal of Computational Chemistry 18, 1955-1970
(1997).

25. W. L. Jorgensen, N. A. McDonald, Development of an all-atom force field for
heterocycles. Properties of liquid pyridine and diazenes. Theochem-Journal of
Molecular Structure 424, 145-155 (1998).

26. R. C. Rizzo, W. L. Jorgensen, OPLS all-atom model for amines: Resolution of the
amine hydration problem. Journal of the American Chemical Society 121, 4827-
4836 (1999).

27. G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, W. L. Jorgensen, Evaluation and
reparametrization of the OPLS-AA force field for proteins via comparison with
accurate quantum chemical calculations on peptides. Journal of Physical
Chemistry B 105, 6474-6487 (2001).

28. W. C. Still, A. Tempczyk, R. C. Hawley, T. Hendrickson, Semianalytical
Treatment of Solvation for Molecular Mechanics and Dynamics. J. Am. Chem.
Soc. 112, 6127-6129 (1990).

29. D. Qiu, P. S. Shenkin, F. P. Hollinger, W. C. Still, The GB/SA continuum model
for solvation. a fast analytical method for the calculation of approximate born
radii. J. Phys. Chem. 101, 3005-3014 (1997).

30. A. Bondi, in The Journal of Physical Chemistry. (1964), vol. 68, pp. 441-451.
31. R. C. Rizzo, T. Aynechi, D. A. Case, I. D. Kuntz, Estimation of absolute free

energies of hydration using continuum methods: Accuracy of partial, charge
models and optimization of nonpolar contributions. J. Chem. Theory Comput. 2,
128-139 (2006).

32. L. David, R. Luo, M. K. Gilson, Comparison of the generalized Born and Poisson
models of electrostatics: Energetics and dynamics of the HIV-1 protease. J.
Comput. Chem. 21, 295-309 (2000).

33. A. Nicholls, B. Honig, A rapid finite difference algorithm, utilizing successive
over-relaxation to solve the Poisson-Boltzmann equation. J. Comput. Chem. 12,
435-445 (1991).

34. R. Luo, L. David, M. K. Gilson, Accelerated Poisson-Boltzmann calculations for
static and dynamic systems. Journal of Computational Chemistry 23, 1244-1253
(2002).

 169

35. Q. Lu, R. Luo, A Poisson-Boltzmann dynamics method with nonperiodic
boundary condition. Journal of Chemical Physics 119, 11035-11047 (2003).

36. P. S. Pacheco, Parallel Programming with MPI. (Morgan Kaufmann Publishers,
Inc., San Francisco, California, 1997).

37. B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP. (MIT Press, Cambridge,
Massachusetts, 2008), pp. 353.

38. T. Sterling, J. J. Irwin, ZINC 15 – Ligand Discovery for Everyone. J. Chem. Inf.
Model. 55, 2324-2337 (2015).

39. E. F. Pettersen et al., UCSF chimera - A visualization system for exploratory
research and analysis. Journal of Computational Chemistry 25, 1605-1612 (2004).

40. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. Journal
of Molecular Graphics & Modelling 14, 33-38 (1996).

41. M. H. M. Olsson, C. R. Sondergaard, M. Rostkowski, J. H. Jensen, PROPKA3:
Consistent Treatment of Internal and Surface Residues in Empirical pK(a)
Predictions. J. Chem. Theory Comput. 7, 525-537 (2011).

42. C. R. Sondergaard, M. H. M. Olsson, M. Rostkowski, J. H. Jensen, Improved
Treatment of Ligands and Coupling Effects in Empirical Calculation and
Rationalization of pK(a) Values. J. Chem. Theory Comput. 7, 2284-2295 (2011).

43. R. Salomon-Ferrer, D. A. Case, R. C. Walker, An overview of the Amber
biomolecular simulation package. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 3,
198-210 (2013).

44. P. Eastman et al., OpenMM 4: A Reusable, Extensible, Hardware Independent
Library for High Performance Molecular Simulation. J. Chem. Theory Comput. 9,
461-469 (2013).

45. S. Jo et al., CHARMM-GUI 10 years for biomolecular modeling and simulation.
Journal of Computational Chemistry 38, 1114-1124 (2017).

46. B. T. Miller et al., CHARMMing: A new, flexible web portal for CHARMM.
Journal of Chemical Information and Modeling 48, 1920-1929 (2008).

47. J. L. Markley et al., Recommendations for the presentation of NMR structures of
proteins and nucleic acids - (IUPAC Recommendations 1998). Pure and Applied
Chemistry 70, 117-142 (1998).

48. A. Dalby et al., Description of several chemical-structure file formats used by
computer-programs developed at Molecular Design Limited. J. Chem. Inf.
Comput. Sci. 32, 244-255 (1992).

49. A. Ali et al., Discovery of HIV-1 protease inhibitors with picomolar affinities
incorporating N-aryl-oxazolidinone-5-carboxamides as novel P2 ligands. J. Med.
Chem. 49, 7342-7356 (2006).

50. A. Rizzi et al., Overview of the SAMPL6 host–guest binding affinity prediction
challenge. J Comput Aided Mol Des 32, 937-963 (2018).

 170

XIV. Index

	The standard formatted file types .xyz, .sdf, .mol, Macromodel .dat, and .crd containing previously generated conformers may be read in to provide a starting point for a new calculation.
	5. Run scripts

