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I. Introduction 
 

1. VM2 background and theory 
 
1.1 Purpose of VM2 
  
The main purpose of VM2 is to compute the binding affinities of small molecule ligands 
to proteins and other types of receptors.(1, 2) VM2 was developed for use by researchers 
in the pharmaceutical industry to aid in drug development, as well as researchers in 
academia and government laboratories for the purposes of drug discovery research and 
fundamental studies of the driving forces for molecular binding.(3) Additional 
applications of the VM2 technology are in the chemical and agricultural industries, where 
prediction of molecular binding affinities can also aid in product research and 
development. 
 
VM2 is grounded in rigorous statistical mechanics theory of binding affinities, (4, 5) and 
is suitable for application to condensed phase systems, where commonly there are 
multiple degenerate and/or near-degenerate low energy molecular conformations that 
have significant weightings in the Boltzmann distribution. 
 
1.2. Binding free energy 
 
For a receptor-ligand (RL) system in solution at equilibrium 

 
the free energy of binding,  Δ𝐺𝐺0, may be determined via the experimental equilibrium 
constant 𝐾𝐾bind 
 

Kbind ≡ �
𝐶𝐶𝑅𝑅𝑅𝑅𝐶𝐶0

𝐶𝐶𝑅𝑅𝐶𝐶𝐿𝐿
�

Equilibrium
 

 
 
Δ𝐺𝐺0 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐾𝐾bind) 
 
where 𝐶𝐶0 is the standard concentration (usually 1 molar), and 𝐶𝐶𝑅𝑅𝑅𝑅, 𝐶𝐶𝑅𝑅, and 𝐶𝐶𝐿𝐿 are the 
receptor-ligand complex concentration, the receptor concentration, and the ligand 
concentration, respectively, and R and T are the ideal gas constant and temperature, 
respectively. 
 
Isothermal titration calorimetry experiments can directly measure binding free energies as 
well as the constituent enthalpy and entropy terms 
 
Δ𝐺𝐺0 = Δ𝐻𝐻0 − 𝑇𝑇Δ𝑆𝑆0 
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1.3. Enthalpy-entropy compensation 
 
Examination of the constituent enthalpy and entropy terms of the free energy of binding 
can provide useful insight and direction when designing ligands to strongly bind to a 
given receptor. 
 
One challenge in the design of strongly binding ligands is the so-called enthalpy-entropy 
compensation effect: when a ligand makes favorable interactions that lower the overall 
potential energy/enthalpy, the often-resulting increase in rigidity of the ligand (and 
possibly parts of the receptor) leads to a loss of entropy. The net effect, then, can be little 
or no increase in the binding affinity of a ligand, even though favorable interactions with 
respect to potential energy are present.   
 
Enthalpy-entropy compensation has been widely observed both experimentally (6, 7) and 
in modeling studies that adequately account for entropic effects. The following graph is 
typical of host-guest data. (8) 
 

 
 
An additional key finding is that the compensation is not in general exact, for example 
the data in the above graph is roughly linear but has a width of 5 Kcal/mol or more in 
parts. This means that the enthalpy alone will not necessarily indicate the relative 
strengths of binding of a series of ligands to a receptor. It is, therefore, very often 
necessary to include entropy effects in computational modeling of receptor-ligand 
binding affinities to consistently predict correctly the ordering of ligands with respect to 
their binding affinity strength.  
 
Based on the above findings, to achieve very high binding affinities, one strategy is to 
push the enthalpy-entropy compensation non-linearity further by designing ligands that 
fall considerably outside the normal quasi-linear range. (9) These ligands are able to 
achieve favorable interactions with respect to potential energy lowering, but do not pay a 
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large entropy penalty for doing so. Computational free energy methods can be a useful 
tool when pursuing this strategy. 
 
1.4. Computational free energy methods 

 
A common approach for computational prediction of relative strengths of receptor-ligand 
binding is docking and scoring. While docking and scoring methodology has been found 
to be effective in terms of enrichment, its use of ad hoc scoring functions means it is 
unable to reliably rank ligands with respect to their binding affinities;(10) therefore, R&D 
scientists are looking to more rigorous free energy calculations to provide the accuracy 
they need in the context of drug development and development of other products 
dependent on molecular binding properties.   
 
VM2 is a so-called end-point method where receptor-ligand binding free energies are 
determined from the standard chemical potentials of the receptor R, ligand L, and 
receptor-ligand complex RL 

 
 
∆𝐺𝐺0 = 𝜇𝜇𝑅𝑅𝑅𝑅0 − 𝜇𝜇𝑅𝑅0 − 𝜇𝜇𝐿𝐿0  where 𝜇𝜇0 =  Standard Chemical Potential 
 
The standard chemical potential is defined by classical statistical mechanics as an integral 
over all phase space 
 

𝜇𝜇0 = −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �
8𝜋𝜋2

𝐶𝐶0
�𝑒𝑒−(𝑈𝑈+𝑊𝑊) 𝑅𝑅𝑅𝑅⁄ 𝑑𝑑𝑟𝑟int� 

 
where R is the gas constant,  is the standard concentration, and the term 8𝜋𝜋2 𝐶𝐶0⁄  is 
integrated external translational/rotational degrees of freedom. T is temperature, U is the 
potential energy, W is solvation energy (U and W are currently molecular mechanics 
(MM) based), and 𝑟𝑟𝑖𝑖nt represents internal coordinate phase space. 
 
The integral over all phase space is difficult to compute and is a major reason for the 
computational expense of the application of rigorous statistical mechanics to binding 
affinity modeling of condensed phase systems such as protein-ligand complexes. 

 
1.5. Mining minima approximation 
 
The VM2 algorithm approximates using the 2nd-generation mining minima approach, 
(11, 12) which replaces the integral over all phase space shown above with a sum of 
integrals over local energy minima of the system. The following shows an example three 
minima system. (Note that actual calculations involve tens to many hundreds of minima.) 
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𝜇𝜇𝑂𝑂 = −𝑅𝑅𝑇𝑇𝑙𝑙𝑙𝑙�
8𝜋𝜋2

𝐶𝐶𝑂𝑂
�𝑍𝑍𝑖𝑖

3

𝑖𝑖

� 

 
𝑍𝑍𝑖𝑖 = ∫ 𝑒𝑒−𝛽𝛽(𝑈𝑈(𝑟𝑟)+𝑊𝑊(𝑟𝑟))

well 𝑖𝑖 𝑑𝑑𝑟𝑟int  
 
where Zi are local configuration integrals. This is a good approximation as long as the 
dominant low energy minima of the system are found. 
 
1.6. Molecular coordinate systems 
 
The VM2 software uses both Cartesian and internal molecular coordinate systems. 
 
1.6.1 Cartesian coordinates 
 
Standard Cartesian coordinates are used for calculation of force field non-bonded pair 
energies and gradients as well as solvation pair energies and gradients where required. 
While the force field bonded term energies are calculated directly by the force field 
defined bond, angle, and dihedral expressions, the bonded gradient terms although 
calculated via bond, angle, and dihedral expressions are projected onto the Cartesian 
coordinates to provide total gradients in terms of Cartesian coordinates.    
 
1.6.2 Anchored Cartesian coordinates 
 
If a Cartesian coordinate frame is chosen so that it rotates and translates with the 
molecule, in classical statistical mechanics rotational and translational degrees of 
freedom can be formally separated. (13) For systems where all atoms are mobile this 
enables calculation of a Hessian matrix with no rotational/translational contaminants. 
 
1.6.3 Bond-Angle-Torsion (BAT) internal coordinates 
 
On reading in molecular systems, the VM2 software automatically generates a set of 
bond-angle-torsion (BAT) internal coordinates. This allows transformation of Cartesian 
coordinate Hessian matrices into internal coordinates, and subsequent determination of 
modes that are linear combinations of bonds stretches, angle bends, and torsional 
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rotations. These modes are useful in VM2’s conformational search algorithms (see 
Section 1.7) as well as its treatment of anharmonic effects via numerical integration along 
BAT mode distortions (see Section 1.8). 
 
1.7. Conformational searching 
 
The VM2 algorithm requires that the low energy minima/conformers of a molecular 
system be found. Two basic types of conformational search are available in the VM2 
package: a distort-minimization scheme, where distortions along torsional modes are 
carried out followed by energy minimization of the distorted structure, and a rigid body 
translation-rotation of ligands in receptor binding pockets. These two types of search may 
be used separately or in conjunction.  
 
The distort-minimization scheme, an enhanced version of the Tork algorithm (11), starts 
with calculation of the matrix of the energy 2nd derivatives (Hessian) in Cartesian 
coordinates, followed by transformation to internal (BAT) coordinates, removal of rows 
and columns corresponding to bond and angle distortions, followed by diagonalization to 
produce purely torsional modes comprising linear combinations of dihedrals. The system 
is then distorted along these torsional modes (or search drivers). The distortion is broken 
up into steps and between each step some relaxation of atoms not significantly weighted 
in the driver occurs, while keeping the driver atoms fixed. This allows a larger distortion 
before encountering steric clashes. On completion of the distortion, the resulting structure 
is geometry optimized. The basic idea of the technique is to drive structures over energy 
barriers and with subsequent geometry optimization to find new and lower energy 
minima. 
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1.8. Configuration integrals 
 
The local configuration integrals  
 

𝑍𝑍𝑖𝑖 = � 𝑒𝑒−𝛽𝛽(𝑈𝑈(𝑟𝑟)+𝑊𝑊(𝑟𝑟))

well 𝑖𝑖
𝑑𝑑𝑟𝑟int 

 
are calculated using the Harmonic Approximation with Mode Scanning method 
(HAMS),(12) when using molecular mechanics (MM) energy potentials. In this method 
the Hessian (matrix of the energy 2nd derivative) is calculated in the anchored Cartesian 
coordinate system, transformed to bond-angle-torsion (BAT) internal coordinates, (13) 
and diagonalized, with the inverse square root of the eigenvalues providing a harmonic 
approximation to the integral. Anharmonic effects are checked for the low energy modes 
via numerical integrals (mode scanning). The following equation summarizes the HAMS 
approach: 
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where b and θ are bond and angle internal coordinates (Jacobian determinant 
contributions), Sk are numerical integrals, Kl are eigenvalues of the internal (BAT) 
coordinate Hessian matrix,  wl is the integration range of mode l, erf is the error function, 
T is the temperature, and k is Bolztmann’s constant. For a more detailed theory 
description see reference (12). 
 
1.9. Filtering of conformer repeats 
 
Conformational searches inevitably produce conformer repeats. In order to avoid double 
counting of conformers in the Boltzmann averaging, the conformers produced during 
VM2 calculations are checked against each other and any determined to be repeats are 
discarded. This process requires determination of conformer pair RMSDs that is 
symmetry aware. (14) For hosts, ligands, and host-ligand complexes the symmetry 
recognition algorithm involves traversing the molecule from a starting atom and building 
up a molecule name based upon the names of the atoms encountered along the traversal. 
Additional molecule names are generated from other starting atoms, and name-name 
matches are identified as corresponding to symmetry operations. The method detects not 
only global symmetries but also local symmetries associated with bond rotations as well 
as symmetries that are only apparent when alternate resonance forms are considered. For 
protein-involved systems, a simpler check of between conformer amino acid side chains 
that have rotational symmetries is performed.  
 
1.10. VM2 algorithm 
 
The VM2 algorithm is iterative (see schematic representation below), with the calculated 
free energy deemed converged when it is no longer changing within a given tolerance. 
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As the above diagram indicates, the low energy conformer search can be biased toward 
lowering the free energy by seeding it each iteration with conformers that have low free 
energy as opposed to low potential energy. 
 
1.11. Molecular system partitioning 
 
For small systems such as ligand and host molecules (600 atoms or less) all atoms in the 
system are always defined as ‘real’ and  ‘live’. The term ‘real’ means the atom will be 
included in any calculation of the energy; the term ‘live’ means the atom is also treated as 
mobile in the system, though the user can choose atoms to constrain as they wish.  
 
For larger systems such as protein receptors, to make calculations more tractable the 
system is partitioned into totally excluded atoms and a ‘real’ set of atoms. The ‘real’ set 
of atoms contains a subset of atoms that are ‘live’ i.e. mobile, the rest are fixed in space. 
In other words all live atoms are in the ‘real’ set, but not all ‘real’ atoms are in the ‘live’ 
set.  
 
Usually the ‘live’ set are atoms in the active site of a protein; however, the user can 
choose as ‘live’ any part of the protein that they have an interest in exploring structural 
conformations and associated energetics e.g. specific loops or flaps in the case of 1HVR. 
For protein-ligand complex calculations, the ligand atoms are treated as ‘live’ by default, 
but again the user can choose ligand atoms to constrain.  
 
The following figure shows schematically how a real/live set of atoms may be chosen 
based on the position of a co-crystalized ligand in a protein active site; in this case the 
‘real’ set distance cutoff is 12 Å and the ‘live’ set cutoff distance is 7 Å. The ‘live’ set is 
usually chosen by atom-based distances from the ligand; whereas, the ‘real’ set is amino 
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acid residue based, i.e., if a residue’s atom is within the cutoff distance, the whole residue 
is included in the ‘real’ set. 
 

 
This translates to the real/live set shown in the following figure, where purple signifies 
‘live’ atoms and blue signifies ‘real’ but fixed in space atoms. 
 

 
 
2. VM2 package modules 
 
2.1. VM2 : Second-generation mining minima 

 
The VM2 module makes use of all other modules in the package. As such, it initializes 
and reads user input for all package modules at the start of a run. A completed VM2 
calculation provides the free energy of the molecular system, which is a Boltzmann 
average over the conformers found. Average energy and entropy terms are also output. In 
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addition, an energy breakdown is provided for all individual conformers found as well as 
the conformer geometry data in standard formatted files such as sdf, xyz, and mol2. 

 
2.2. Vconf : Conformational search 

 
The Vconf module takes one or multiple starting conformations and attempts to find 
lower energy conformers. It is used by the VM2 module, for which it provides 
conformations for subsequent free energy evaluation. When used by the VM2 module it 
is biased toward lowering the free energy as the VM2 module feeds it starting conformers 
that have the lowest free energy as opposed to lowest potential energy. It can also be used 
independently to find low energy conformers based only on potential energy, as well as 
provide a diverse set of ligand conformations for subsequent placement into a binding 
site as a starting point for a receptor-ligand calculation. 

 
2.3. VfreeE : Configuration integration 

 
The VfreeE module takes one or more conformations. It is used by the VM2 module, 
which feeds it previously geometry-optimized conformers. It returns individual 
conformer free energies and component energies, as well as Boltzmann averages over all 
conformers found. It can also be used independently, processing conformers read-in by 
the package, which may have been generated previously by the VM2 package itself or by 
3rd-party software. 
 
2.4. Vstereochem : Stereochemistry 

 
The Vstereochem module identifies the stereochemistry of starting conformers as well as 
conformers generated during the course of calculations. It is used by the VM2, Vconf, 
and Vgeomopt modules. It cannot currently be run independently. 
 
2.5. Vfilter : Filtering of repeat conformers 

 
The Vfilter module checks for and removes repeat conformers. It will check both 
energies and RMSDs (see below) between conformers. The VFilter module is used by the 
VM2, Vconf, and VfreeE modules; it can also be used independently to filter conformers 
generated previously and read-in. 
 
2.6. Vrmsd : Conformer RMSD 

 
The Vrmsd module determines RMSDs of conformer pairs. It is symmetry aware (14), so 
correctly determines zero RMSDs when conformer subgroups of atoms are rotated. The 
Vrmsd module is used by the Vfilter module and can also be used independently to 
determine RMSDs of groups conformers generated previously and read-in. 
 
2.7. Vhessian : Hessian calculation 

 
The Vhessian module, supplied one or more conformers, calculates the matrix of the 
energy 2nd-derivatives. This module is used by the VM2, Vconf, and VFreeE modules. 
The Vhessian module cannot currently be used independently. 
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2.8. Vgeomopt : Geometry optimization 
 

The Vgeomopt module, supplied one or more conformers, optimizes their geometries, 
driving down the energy-gradient RMSD below a designated tolerance. Available 
geometry optimization methods are conjugate gradient and quasi-Newton. The Vgeomopt 
module is used by the VM2, Vconf, Vfilter, Vrmsd, and Vhessian modules, but can also 
be used independently for previously generated conformers that are read-in. 
 
2.9. Vpotential : Potential energy and potential energy 1st derivative 

 
The Vpotential module, supplied one or more conformers, calculates the potential 
energy(s) or potential energy plus gradient(s). The Solvation energy model(s) used 
depend(s) on user input selections. The Vpotential module is always initialized as it is 
utilized by all other modules. The Vpotential module can be used independently for 
previously generated conformers that are read-in.   
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II. Energy Potentials 
 
In principle, the VM2 method can incorporate any type of molecular energy potential or 
combination of molecular potentials. The current production versions are, however, 
limited to standard molecular mechanics potentials. 
 
1. Molecular mechanics potentials 
 
1.1. Force field support 
 
The VM2 package supports the forms of the most commonly used classical molecular 
mechanics force fields, namely CHARMM (15, 16), OPLS (17),  and AMBER (18, 19). 
The force field parameters are supplied to the VM2 through a VeraChem formatted 
topology file (see section 1.2.); therefore, the standard published parameter sets for 
proteins/nucleic acids can be used as is, but can also be modified as desired by simple 
text file editing. Generalized parameter sets e.g. GAFF, (20) CGenFF, (21) and Dreiding 
(22) are read in via a text file of the same format. 
. 
1.1.1. Basic potential energy form 
 
The basic classical force field potential energy can be written in terms of bonded and 
nonbonded terms 
 
𝑈𝑈forcefield = 𝑈𝑈bonded + 𝑈𝑈nonbonded 
 
where 
 
𝑈𝑈bonded = 𝑈𝑈bond + 𝑈𝑈angle + 𝑈𝑈dihedral + 𝑈𝑈improper 
 
𝑈𝑈nonbonded = 𝑈𝑈Coulomb + 𝑈𝑈van der Waals 
  
1.1.2. Bond and angle energy terms 
 
The forms of the bond and angle terms are 
 

𝑈𝑈bond = � 𝐾𝐾𝑏𝑏

bonds

𝑏𝑏

(𝑙𝑙 − 𝑙𝑙0)2 

 

𝑈𝑈angle = � 𝐾𝐾𝑎𝑎

angles

𝑎𝑎

(𝜃𝜃 − 𝜃𝜃0)2 

 
where 𝐾𝐾𝑏𝑏 and 𝐾𝐾𝑎𝑎 are bond and angle force constants, respectively, 𝑙𝑙 and 𝜃𝜃 are the current 
bond length and angle, respectively, and 𝑙𝑙0 and 𝜃𝜃0 are the reference bond length and 
angle, respectively. 
 
1.1.3. Torsion energy terms 
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The forms of the dihedral and improper dihedral for the CHARMM force field are 
 

𝑈𝑈dihedral = � 𝐾𝐾𝜑𝜑

dihedrals

𝜑𝜑
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𝑈𝑈improper = � 𝐾𝐾𝜔𝜔
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where 𝐾𝐾𝜑𝜑 and 𝐾𝐾𝜔𝜔 are dihedral and improper torsion force constants, respectively, 𝜑𝜑 is the 
dihedral angle, 𝑛𝑛 and 𝛿𝛿 are the dihedral multiplicity and phase, and 𝜔𝜔0 and 𝜔𝜔 are the 
reference improper torsion angle and current improper torsion angle, respectively. 
 
The form of both the dihedral and improper dihedral for the AMBER force field takes the 
same form as the CHARMM dihedral term but with a factor of a half 
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The OPLS torsion energy, dihedral and improper, appears in the literature as an explicit 
truncated Fourier series with the coefficients 𝑉𝑉1, 𝑉𝑉2, and 𝑉𝑉3, and phase angles 𝑓𝑓1, 𝑓𝑓2, and  
𝑓𝑓3, 
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1.1.4. Coulomb nonbonded energy terms 
 
The form of the CHARMM non-bonded electronic (Coulomb) term is 
 

𝑈𝑈Coulomb = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
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where i and j are the indexes of a unique non-bonded atom pair at least three bonds apart, 
𝑞𝑞𝑖𝑖 is the partial charge for atom i, 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between atoms i and j, and 𝜖𝜖0 is the 
permittivity of free space.  For AMBER and OPLS interactions involving atoms four 
bonds apart (so-called 1-4 interactions) are scaled by a factor of a half 
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where 𝑓𝑓𝑖𝑖𝑖𝑖 = 0.5 for 1-4 interactions and 𝑓𝑓𝑖𝑖𝑖𝑖 = 1.0 for 1-N interactions, where N>4. 
Literature descriptions of the OPLS Coulomb term also include the factor 𝑒𝑒2 in the 
numerator for conversion from elementary charges to energy units. This conversion 
factor is assumed in CHARMM and AMBER descriptions. In the VM2 package the 
factor used for conversion from elementary charges to Kcal/mol is 332.054.  
 
1.1.5. Van der Waals nonbonded energy terms 
 
The CHARMM form of the Lennard-Jones (LJ) van der Waals non-bonded energy term 
is 
 

𝑈𝑈van der Waals = � 𝜀𝜀𝑖𝑖𝑖𝑖 ��
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The force field LJ parameters 𝜀𝜀𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 are associated with the well depth and the 
minimum energy distance, respectively. The well depth and minimum energy distance 
values used in the van der Walls expression for atom pairs are calculated as the geometric 
mean 𝜀𝜀𝑖𝑖𝑖𝑖 =  �𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 and the arithmetic mean 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� 2⁄ . As is the case for 
the Coulomb term, the AMBER and OPLS van der Waals expression is the same except 
that it includes a scaling factor 𝑓𝑓𝑖𝑖𝑖𝑖 = 0.5 for 1-4 interactions and 𝑓𝑓𝑖𝑖𝑖𝑖 = 1.0 for 1-N 
interactions, where N>4. 
 
In practice, and is the case for the VM2 package, for reasons of computational efficiency 
the van der Waals expression may be re-expressed as follows 
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where 
 
𝜎𝜎𝑖𝑖𝑖𝑖 = 2−1 6⁄ 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 
 
1.1.6. CHARMM parameter sets 
 
The CHARMM (15, 16) parameter sets for macromolecular systems as well as the 
generalized set CGenFF (21) are freely available for download here 
http://mackerell.umaryland.edu/charmm_ff.shtml. 
 
1.1.7. OPLS parameter sets 
 
Except for the most recent propriety sets, the OPLS parameter sets are available in the 
literature. (17, 23-27) 
 
1.1.8. AMBER parameter sets 

http://mackerell.umaryland.edu/charmm_ff.shtml
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The AMBER parameter sets are provided with the ambertools download 
(http://ambermd.org). 
 
1.1.9. Dreiding parameter set 
 
The Dreiding parameter set is published in the literature. (22) 
 
 
1.2. The VeraChem topology and force field parameter file (.top) 
 
The force field parameters discussed above are read in at the start of each VM2 
calculation from a formatted text file with the extension .top. The format of this file and 
the correspondence with the force field parameters identified above are now summarized. 
A specific example of a .top file can be found in Section XII of this manual. 
 
Each new section in the .top file starts with an exclamation point plus keyword. 
 
1.2.1. Identification of force field 
 
The first line in the VeraChem parameter file identifies the force field to be used. For 
example 
 
           !NTITLE 3 
 
indicates that the AMBER force field will be used. The available values 1, 2, 3, and 4 
correspond to CHARMM, Dreiding, AMBER, and OPLS, respectively. 
 
1.2.2. Atom types, charges, and van der Waals parameters 
 
The next section starts with a line with the atom keyword and the total atom count and 
subsequent lines contain six columns of data e.g. 
 
  !NATOM 3137 
1 N3     14.01000   -0.20200   -0.17000    1.82400 
2 H       1.00800    0.31200   -0.01570    0.60000 
3 H       1.00800    0.31200   -0.01570    0.60000 
4 CT     12.01000   -0.01200   -0.10940    1.90800 
 
The column numbers and corresponding data are: 
1: atom number 
2: force field atom type 
3: atomic mass 
4: partial atomic charge 
5: well depth parameter 𝜀𝜀𝑖𝑖 
6: minimum energy distance parameter 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 
 
Note that for CHARMM parameters an additional two columns can be present containing 
𝜀𝜀𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 specifically for 1-4 atom pairs. 
 

http://ambermd.org/
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1.2.3. Bonds and bond force constants 
 
The bond section first line contains the bond keyword and bond count; subsequent lines 
contain bond data in six columns e.g. 
 
!NBOND: 3164 
1     4   367.000   1.47100 N3   CT 
4     7   310.000   1.52600 CT   CT 
7    10   310.000   1.52600 CT   CT 
1    13   367.000   1.47100 N3   CT 
 
The column numbers and corresponding data are: 
1: atom number i 
2: atom number j 
3: force constant 𝐾𝐾𝑏𝑏 associated with bond between atom numbers i and j 
4: the reference (equilibrium) bond length 𝑙𝑙0 between atom numbers i and j 
5: force field atom type of atom number i 
6: force field atom type of atom number j 
 
1.2.4. Angles and angle force constants 
 
The angle section first line contains the angle keyword and angle count; subsequent lines 
contain angle data in eight columns e.g. 
 
  !NTHETA: 5795 
2     1     3    35.000  1.911136 H    N3   H 
2     1     4    50.000  1.911136 H    N3   CT 
3     1     4    50.000  1.911136 H    N3   CT 
2     1    13    50.000  1.911136 H    N3   CT 
 
The column numbers and corresponding data are: 
1: atom number i 
2: atom number j 
3: atom number k 
4: force constant 𝐾𝐾𝑎𝑎 associated with angle between atom numbers i, j, and k 
5: the reference (equilibrium) angle 𝜃𝜃0, in radians, between atom numbers i, j, and k 
6: force field atom type of atom number i 
7: force field atom type of atom number j 
8: force field atom type of atom number k 
 
1.2.5. Proper dihedrals and corresponding parameters 
 
The proper dihedral section first line contains the proper dihedral keyword and unique 
proper dihedral count; subsequent lines contain dihedral data in twelve columns e.g. 
 
  !NPHI: 8474 
16    15    17    18    2.0000    1.0000    0.0000  1 O    C    N    H 
16    15    17    18    2.5000    2.0000    3.1416  1 O    C    N    H 
16    15    17    19    2.5000    2.0000    3.1416  1 O    C    N    CT  
13    15    17    18    2.5000    2.0000    3.1416  1 CT   C    N    H 
13    15    17    19    2.5000    2.0000    3.1416  1 CT   C    N    CT 
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14    13    15    16    0.0000    2.0000    0.0000  1 HP   CT   C    O 
14    13    15    17    0.0000    2.0000    0.0000  1 HP   CT   C    N 
 
The column numbers and corresponding data are: 
1: atom number i 
2: atom number j 
3: atom number k 
4: atom number l 
5: force constant 𝐾𝐾𝜑𝜑 associated with torsion between atom numbers i, j, k, and l 
6: the multiplicity 𝑛𝑛 associated with torsion between atom numbers i, j, k, and l 
7: the phase 𝛿𝛿 for the current term 
8: integer setting force constant sign 
9: force field atom type of atom number i 
10: force field atom type of atom number j 
11: force field atom type of atom number k 
12: force field atom type of atom number l 
 
1.2.6. Improper dihedrals and corresponding force constants 
 
The improper dihedral section first line contains the improper dihedral keyword and 
improper dihedral count; subsequent lines contain improper dihedral data in eleven 
columns e.g. 
 
  !NIMPHI: 550 
13    17    15    16     10.50      3.14   2.0 CT   N    C    O 
15    19    17    18      1.10      3.14   2.0 C    CT   N    H 
24    29    27    28     10.50      3.14   2.0 CT   N    C    O 
27    30    29    31      1.00      3.14   2.0 C    H    N    H 
19    34    32    33     10.50      3.14   2.0 CT   N    C    O 

 
The column numbers and corresponding data are: 
1: atom number i 
2: atom number j 
3: atom number k 
4: atom number l 
5: force constant 𝐾𝐾𝜑𝜑 associated with torsion between atom numbers i, j, k, and l 
6: the phase 𝛿𝛿 for the current term 
7: the multiplicity 𝑛𝑛 associated with torsion between atom numbers i, j, k, and l 
8: force field atom type of atom number i 
9: force field atom type of atom number j 
10: force field atom type of atom number k 
11: force field atom type of atom number l 
 
1.2.7. Nonbonded ‘fixes’ 
 
This section is only relevant for the CHARMM force field and allows van der Waals 
parameters for specific pairs of atom types to be modified e.g. 
 
!NBFIX: 1 
H O -0.30 1.50 -0.15 1.50 
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(Note: the VM2 code currently expects 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, not the uncombined parameters 𝜀𝜀𝑖𝑖, 
𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝜀𝜀𝑗𝑗, and 𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, as is the case for the CHARMM standard parameter file) 
 
1.2.8. Final count of atoms, bonds, angles, proper and improper dihedrals 
 
This section provides the atom, bond, angle, proper dihedral, and improper dihedral 
counts. Note that here the proper dihedral count includes all dihedrals in possible series 
expansions. The last column containing 9999 is not used. 
 
  !NFINAL: 6 
3137       3164       5795      11874        550 9999 
 
1.2.9. !NDON 
 
This section if present will be ignored. 
 
1.3. Solvation models 
 
A solvation treatment is essential for any quantitative prediction of condensed phase 
binding affinities. The VM2 package supports continuum methods for modeling of bulk 
solvation effects. Solvent molecules that play a direct role in ligand binding can be 
explicitly included if desired. 
 
1.3.1. Generalized Born (GB) 
 
The Generalized Born solvation model (28) is available for energy and energy 1st and 2nd 
derivative calculations. The GB electrostatic polarization solvation energy is given by 
 

𝑊𝑊el
GB = −166.027 �
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The indices i and j run over atoms, 𝜖𝜖int is the dielectric constant of the internal (solute) 
medium (1.0 for gas phase), 𝜖𝜖ext is the dielectric constant of the external medium (80.0 
for water), q are the partial atomic charges, 𝑟𝑟𝑖𝑖𝑖𝑖is the distance between atoms i and j, and 
𝛼𝛼𝑖𝑖 is the Born radius of atom i (defined below). The total potential energy with GB 
solvation energy is then given by addition to the force field potential energy 
 
𝐸𝐸𝑡𝑡otal
𝐺𝐺𝐺𝐺 = 𝑈𝑈forcefield + 𝑊𝑊el

GB 
 
Currently only the Still method (29) for calculation of the required Born radii is 
supported. In this approach approximate Born radii are calculated analytically by the 
expression 
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and 𝑊𝑊𝑒𝑒𝑒𝑒,𝑗𝑗

𝐺𝐺𝐺𝐺 is the polarization energy of atom j in Kcal/mol, φ is a dielectric offset, 𝑉𝑉𝑗𝑗 is the 
volume of atom j, 𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣−𝑖𝑖 is the van der Waals radius (or solvation cavity radius) of atom 
i, P1 is the single atom scale factor, P2 is the bonded 1,2 atom pair scale factor, P3 is the 
angle 1,3 atom pair scale factor, and P4 is the nonbonded 1,≥4.  CCF is the close contact 
function for nonbonded 1,≥4 interactions and is given by 
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The default solvation cavity radii used in VM2 is 𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 2⁄ , with the exceptions of 
hydrogen atoms bonded to a hetero atom and covalently bound F atoms, which are set to  
1.15 and 2.00 Angstroms, respectively. The user can choose from a range of alternative 
solvation cavity radii including 𝜎𝜎 2⁄ , bondi,(30)  and mbondi. (31) 
 
The default scaling factors P1-P5 are those from the original fit in reference (29). An 
alternative set of scaling factors, which were fit for a single protein-ligand system (HIV-1 
protease with inhibitor KNI-272) are also available. (32)  
 
1.3.2. Constant dielectric (CD) 
 
A constant dielectric solvation model is available for energies, and energy 1st and 2nd 
derivatives. This very basic damping solvation model divides the Coulomb energy term 
by a dielectric constant. The default is the dielectric of water 𝜖𝜖 = 80.0. 
 

𝑈𝑈CD-Coulomb = �
𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗

4𝜋𝜋𝜋𝜋0𝑟𝑟𝑖𝑖𝑖𝑖
∙
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The VM2 package calculates a “solvation energy” due to this model by simply backing 
out the vacuum Coulomb energy i.e. 
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The total potential energy with CD solvation can then be written as 
 
𝐸𝐸𝑡𝑡otal
𝐶𝐶𝐶𝐶 = 𝑈𝑈forcefield + 𝑊𝑊𝐶𝐶𝐶𝐶 

 
1.3.3. Distance dependent dielectric (DD) 
 
A distance dependent dielectric solvation model is available for energies, and energy 1st 
and 2nd derivatives. This is also a very basic model that varies the dielectric with distance 
between atom pairs. The default is to divide the Coulomb energy term by 4𝑟𝑟𝑖𝑖𝑖𝑖 
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Again, the VM2 package calculates a “solvation energy” by simply backing out the 
vacuum Coulomb energy i.e. 
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The total potential energy with DD solvation can then be written as 
 
𝐸𝐸𝑡𝑡otal
𝐷𝐷𝐷𝐷 = 𝑈𝑈forcefield + 𝑊𝑊𝐷𝐷𝐷𝐷 

 
 
1.3.4. Poisson Boltzmann Surface Area (PBSA) 
 
The Poisson Boltzmann Surface Area solvation model is available for energy 
calculations. As in the GB case, the PBSA potential energy (or potential of mean force 
(PMF), given it is an average over solvent degrees of freedom for a particular solute 
conformation rp) is added to the force field potential energy to give a total potential 
energy 
 
𝐸𝐸�r𝑝𝑝� = 𝑈𝑈forcefield + 𝑊𝑊�r𝑝𝑝�

el
+ 𝑊𝑊�r𝑝𝑝�

np
 

 
where 𝑊𝑊�r𝑝𝑝�

el
 is the electrostatic solvent polarization term and 𝑊𝑊�r𝑝𝑝�

np
is the non-polar 

term which is proportional to the accessible surface area of the solute. The electrostatic 
term is calculated via the solvent induced electrostatic potential 𝜙𝜙𝑗𝑗 at each solute atom j, 
and its partial atomic charge 𝑞𝑞𝑗𝑗  
 
𝑊𝑊�r𝑝𝑝�

el
= 1

2
∑ 𝑞𝑞𝑗𝑗𝑗𝑗 𝜙𝜙𝑗𝑗  . 
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The electrostatic potential 𝜙𝜙𝑗𝑗 at atomic charge 𝑞𝑞𝑗𝑗 is determined by solving the Poisson-
Boltzmann equation 
 
∇ϵ(r)∇ϕ(r) = 4𝜋𝜋ρ(r) − 4𝜋𝜋�𝑧𝑧𝑖𝑖

𝑖𝑖

𝑐𝑐𝑖𝑖𝑒𝑒[−𝑧𝑧𝑖𝑖ϕ(r) 𝑘𝑘𝐵𝐵⁄ 𝑇𝑇] 

 
where ϵ(r) is the dielectric constant, ϕ(r) is the electrostatic potential, ρ(r) is the solute 
charge, 𝑧𝑧𝑖𝑖 is the charge of ion type i, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, T  is the temperature, 
𝑐𝑐𝑖𝑖 is the bulk density of ion type i far from the solute. 
 
The PBSA implementation in the VM2 package solves the linearized PB equation 
through finite differencing on a grid. (33-35) A nonlinear solver is not currently 
available. 
 
The accessible surface area of the solute used for calculating the non-polar energy term is 
determined …………… 
 
Boundary condition calculation, modified incomplete Cholesky conjugate gradient 
(ICCG) solver, and energy-from-dielectric-boundary calculation ………… 
 
2. Quantum mechanics 
 
Quantum mechanics potentials are not supported in this version of the VM2 package. 
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III. Installation 
 
1. Obtaining the VM2 package, and package choices 
 
1.1. Commercial licensing 
 
To obtain the VM2 package for commercial use contact sales@verachem.com. 
 
Commercial licensing available includes one and two year licenses as well as a perpetual 
license. Multi-site licenses are available. 
 
1.2 Trial license 
 
To obtain a trial license for the VM2 package contact sales@verachem.com 
 
Free three-month licenses are available for users to trial the fully functional parallel 
processor enabled VM2 package. 
 
1.3 Academic licensing   
 
To obtain the VM2 package for academic use contact info@verachem.com 
 
Provide your name, position, and institution, and outline in general terms your intended 
use of the software. 
 
1.4 Package choices 
 
A number of choices are available, which range in capability from ligand only 
calculations in serial processor mode to protein-ligand binding affinity calculations run in 
parallel processor modes. The following table shows the various packages available and 
their capabilities: 
 

VM2 Package Parallelization 
 

Maximum atom count 
Real atoms Live atoms 

Ligand only Serial, MPI - 200 
Host+ligand Serial, MPI - 600 
Protein+ligand Serial, MPI,  

MPI+OpenMP, 
MPI+CUDA, 
MPI+OpenMP+CUDA 

10000 3000 

Full suite Serial, MPI,  
MPI+OpenMP, 
MPI+CUDA, 
MPI+OpenMP+CUDA 

10000 3000 

Full suite - large Serial, MPI,  
MPI+OpenMP, 
MPI+CUDA, 
MPI+OpenMP+CUDA 

10000 5000 

mailto:sales@verachem.com
mailto:sales@verachem.com
mailto:info@verachem.com
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2. Operating systems and hardware 
 
The VM2 package currently runs on Linux desktops, workstations, and clusters. It can 
also take advantage of GPU acceleration. 
 
2.1. Linux workstations 
 
The serial, MPI, and MPI-OpenMP VM2 packages can be installed any workstation with 
Intel CPU(s) and two gigabytes of RAM per compute core or more available, which is 
running Linux kernel 2.6.32 or later e.g. CentOS 6.9+, Ubuntu 14.04+, etc. It is 
recommended that a minimum of 8 CPU cores is available for computation. 
 
2.2. Linux desktops 
 
These VM2 packages can also run on commodity desktop Intel PCs running Linux kernel 
2.6.32 or later that have adequate memory, though recommended use would be for 
smaller calculations (ligand, hosts, host-ligand complexes), with dedicated workstations 
more suitable for the more computationally demanding protein and protein-ligand 
complex calculations. 
 
2.3. Linux clusters 
 
The MPI and MPI-OpenMP VM2 packages can run across clusters of workstations (or 
clusters of commodity machines in the case of Beowulf clusters). Given that the MPI 
parallelization schemes are not communication bound slower Ethernet interconnects are 
adequate, though parallel MPI also works with the faster InfiniBand interconnects if 
present. 
 
2.4. Linux workstations and clusters with NVIDIA GPU acceleration 
 
The MPI-CUDA and MPI-OpenMP-CUDA VM2 packages can take advantage of 
NVIDIA GPUs (Fermi and Kepler architectures) for acceleration of parts of its algorithm. 
This includes use of multi-GPU workstations and clusters of workstations each with 
multiple GPUs. 
 
2.5. OSX 
 
VM2 is not currently available for OSX. 
 
2.6. MS Windows 
 
VM2 is not currently available for MS Windows. 
 
3. Installation procedure 
 
3.1. Download the VM2 package 
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After downloading the VM2 package and the example set 
 

vcCompChem_<version>.tar.bz2  
 

vcCompChem_<version>_examples.tar.bz2 
 
 
where version is the major, minor, and sub-minor version numbers. (e.g. 2_7_050), 
uncompress and untar them in location of your choice, e.g. 
 

tar xvf vcCompChem_<version>.tar.bz2 
 
tar xvf vcCompChem_<version>_examples.tar.bz2 
 

will create the directories  
 
 vcCompChem_<version>/ 
 
 vcCompChem_<version>_examples/ 
 
in the directory you are currently in. 
 
3.2. License file 
 
Copy your license file, named vm2_license.LIC, into the vcCompChem_<version>/exe 
directory. 
 
3.3. Environment variables for installation 
 
These installation instructions assume the bash shell is being used. Place the following 
shell commands and environment variable settings in your .bashrc file, which should 
then be sourced prior to running the installation script. You may use another default shell 
as you wish, as long as the equivalent command/same environment variables are set.  
 
Modify the variable VCHOME to reflect the location of the directory resulting from the 
tar file extraction above. 
 
------------------------------------------------------------------------------------------------------------ 
ulimit -s unlimited 
export VCHOME=/home/<my_user_name>/vcCompChem_<version> 
export VM2HOME=$VCHOME 
export VCPYTHON=$VCHOME/exe/vc_python 
export VM2PYTHON=$VCPYTHON 

------------------------------------------------------------------------------------------------------------ 
 
3.4 Requirements for installation 
 
It may be necessary, depending on the Linux flavor being used, to install packages such 
as tcsh and g77. 
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zlib-devel.x86_64 might be required to compile python and gcc-c++.x86_64 for the 
extensions. In most cases these packages will already be installed on the system. 
 
To check for already installed libraries: 
 
CentOS, RHEL: 
   yum list zlib-devel 
   yum list gcc 
   yum list g++ 
 
Debian, Ubuntu: 
   dpkg -l zlib-devel 
   dpkg -l gcc 
 
3.5 Installation script 
 
The following sequence of commands should complete the installation.  
 
 cd vcCompChem_<version> 
 cd build 
 ./install_vcCompChem.sh 
 
The installation will take several minutes. At the conclusion of the installation steps an 
automated test set will run, which may also take several minutes to complete. 
If any of the automated tests fail, relevant information will be found in the log files they 
generate in the vcCompChem_<version>/tests directory. One common issue is that the 
VCHOME and/or VCPYTHON environment variable(s) are not set or set incorrectly. 
Check this by typing: 
 
 echo $VCHOME 
 
 echo $VCPYTHON 
 
Please contact VeraChem for support at support@verachem.com if you have difficulties 
with installation. 
 
4. Installed VM2 package structure 
 
The installed VM2 package directories of interest are: 
 
$VCHOME/documentation 
$VCHOME/exe 
$VCHOME/lib 
$VCHOME/tests 
 
The documentation directory contains a PDF of the package manual and a text file 
containing the installation directions. The exe directory contains helper software tools 
and the VM2 executables themselves. 

mailto:support@verachem.com
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4.1. Helper tools 
 
A set of helper command line software tools are present in the $VCHOME/exe directory. 
Currently, the most useful of these are: 
 
4.1.1. VCharge : assignment of partial atomic charges 
 
VCharge provides fast, easy access to accurate partial charges for virtually any drug-like 
compound. As input it requires an sdf/mol file. In addition to the Linux command line 
version supplied with this package, a GUI version is available. 
 
4.1.2. VConf : 2D to 3D and small molecule conformational search 
 
VConf is a standalone conformational search application, which processes an SD file of 
drug-like compounds containing an initial 2D or 3D conformation of each molecule. In 
addition to the Linux command line version supplied with this package, a GUI version is 
available.  
 
4.1.3. prm2top : AMBER formatted input data files to VM2 input data files 
 
This tool given AMBER format .prmtop and .inpcrd files, outputs VM2 input data files – 
see Section V. 5.1. 
 
4.1.4. psf2top : CHARMM formatted input data files to VM2 input data files 
 
This tool given a CHARMM format .psf file and .sdf/.mol file, outputs VM2 input data 
files – see Section V. 5.2. 
 
4.1.5. mmo2top : Schrodinger mmo file to VM2 input data files 
 
This tool given a Schrodinger .mmo file, output VM2 data files – see Section V. 5.3. 
 
 
4.2. VM2 executables 
 
The VM2 executables present in the $VCHOME/exe directory depends on the licensing 
level – see Section 1.4 above. 
 
 Ligand only:  VC_CompChemPackage_serial.exe 
   VC_CompChemPackage_mpi.exe 
 
Host+ligand:  VC_CompChemPackage_serial.exe 
   VC_CompChemPackage_mpi.exe 
 
Protein+ligand: VC_CompChemPackage_serial.exe 
   VC_CompChemPackage_mpi.exe 
   VC_CompChemPackage_mpi_openmp.exe 
   VC_CompChemPackage_mpi_openmp_cuda.exe 

http://www.verachem.com/wp-content/uploads/2013/05/vcharge_v1.pdf
http://www.verachem.com/products/vcharge/
http://www.verachem.com/wp-content/uploads/2013/05/vconf_v2.pdf
http://www.verachem.com/products/vconf/
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Full suite:  VC_CompChemPackage_serial.exe 
   VC_CompChemPackage_mpi.exe 
   VC_CompChemPackage_mpi_openmp.exe 
   VC_CompChemPackage_mpi_openmp_cuda.exe 
 
Full suite - large: VC_CompChemPackage_serial.exe 
   VC_CompChemPackage_mpi.exe 
   VC_CompChemPackage_mpi_openmp.exe 
   VC_CompChemPackage_mpi_openmp_cuda.exe 
 
4.3. Supplied libraries 
 
The following run time libraries are supplied in $VCHOME/lib : 
 
/intel   Required Intel math, linear algebra, and parallel processing   
   libraries (MPI, OpenMP.)  
 
/cuda   Required Nvidia CUDA libraries for running on GPUs. 
 
/magma   Required linear algebra libraries for running on GPUs. 
 
5. Environment variables for running validation calculations 
 
The following environment variables must be set before running a calculation. 
They can either be set in the user’s .bashrc or, preferably, within a script used to launch 
the calculation. Note that the actual values of OMP_NUM_THREADS and 
MKL_NUM_THREADS will depend on the type of parallel run being requested. See 
Sections VI 4. and VI 5. below for examples of different runs and alternatives to bash 
shell scripts e.g C-shell, PBS, SLURM. 
 
------------------------------------------------------------------------------------------------------------ 
ulimit -s unlimited 
 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
export OMP_NUM_THREADS=1 
export MKL_NUM_THREADS=1 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
------------------------------------------------------------------------------------------------------------ 
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Since other software besides VM2 may depend on existing MPI and CUDA 
configurations, care should be taken when setting the variables to ensure that 
they only affect the environment in which VM2 software is being run. 
 
6. Validation tests 
 
A set of validation tests is available in the vcCompChem_<version>/tests directory. A 
subset of these tests is run automatically after installation, as alluded to above. These tests 
are a basic confirmation of installation. It is recommended that the user run all the tests 
appropriate to their intended use of the package (set up pathway type and hardware 
configurations) to confirm correct installation. 
 
A python script that automates the full set of tests is provided: 
 
 run_all_tests.py 
 
This script will run the entire verachem test suite and validate the results.  
The command line argument -py will only run python helper tools tests, -vm2 will only 
run vm2 tests , -c will add cluster tests, and -g will add gpu tests. The default with 
no arguments will run the python helper tools tests, then vm2 tests, but no cluster or gpu 
tests. 
 
To run the subset of tests run automatically after installation use: 
 
 run_install_tests.py  
 
6.1. Helper tools validation tests 
 
The supplied helper tool validation tests check that the file format conversions for the 
Maestro/Macromodel, AmberTools, and Biovia Discovery Studio set up pathways (see 
Section V.5.) are functioning correctly. 
 
6.1.1. Maestro/Macromodel pathway 
 
This test is run automatically after installation. To run manually, carry out the following 
commands, monitor for error messages, and examine log.out for differences with 
reference values: 
 
 cd vcCompChem_<version>/tests/mmo2top/ligand_08 
 
 ./run.sh 
 
 ./verify.sh 
 
 
6.1.2. AmberTools pathway 
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This test is run automatically after installation. To run manually, carry out the following 
commands, monitor for error messages, and examine log.out for differences with 
reference values: 
 
 cd vcCompChem_<version>/tests/prm2top/1ke5/ligand 
 
 ./run.sh 
 
 ./verify.sh 
 
 
 cd vcCompChem_<version>/tests/prm2top/1ke5/protein 
 
 ./run.sh 
 
 ./verify.sh 
 
 
6.1.3. Biovia Discovery Studio Visualizer (DSV) pathway 
 
To run this test the variable VCDSPATH must be set to the location of the CHARMm 
forcefield files from your installation of Discovery Studio Visualizer. (For the 2016 
version on the PC this is DiscoveryStudio_2016/share/forcefield/CHARMm.) 
 
Carry out the following commands, monitor for error messages, and examine log.out for 
differences with reference values: 
 
 cd vcCompChem_<version>/tests/psf2top/1ke5/ligand 
 
 ./run.sh 
 
 ./verify.sh 
 
 
 cd vcCompChem_<version>/tests/prm2top/ psf2top/1ke5/protein 
 
 ./run.sh 
 
 ./verify.sh 
 
 
6.1.4. VCharge validation test 
 
This test is run automatically after installation. To run manually, carry out the following 
commands, monitor for error messages, and examine log.out for differences with 
reference values: 
 
 cd vcCompChem_<version>/tests/vcharge 
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 ./run.sh 
 
 ./verify.sh 
 
 
6.1.5. VConf validation test 
 
This test is run automatically after installation. To run manually, carry out the following 
commands, monitor for error messages, and examine log.out for differences with 
reference values: 
 
 cd vcCompChem_<version>/tests/vconf 
 
 ./run.sh 
 
 ./verify.sh 
 
 
6.2. VM2 validation tests 
 
The tests for vm2 are located in vcCompChem_<version>/tests/vm2 . The test mpi_4 is 
run automatically after installation. 
 
mpi_16/ 
mpi_4/ 
mpi_8/ 
mpi_cuda/ 
mpi_openmp_8_2/ 
mpi_openmp_8_4/ 
mpi_openmp_cuda/ 
 
Each test is named for a different configuration of mpi, openmp, and cuda. Most tests 
include scripts for use with PBS / Torque and when running interactively. The PBS 
scripts will need to be modified to match your computing environment, queue names, run 
time limits, etc. 
 
Example output is provided in the reference subdirectory of each test. If you open either 
.out file, the time required for the test on our hardware will be found at the bottom of the 
file. 
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IV. Parallel processing 
 
1. VM2 serial calculation bottlenecks 
 
As described in Section I, a typical VM2 calculation is iterative and during each iteration 
a search for the system’s low energy minima occurs (conformational search) followed by 
computation of local configuration integrals for this new batch of minima (after filtering 
out repeats). The cumulative free energy is then calculated and if it is no longer changing 
within a given tolerance the calculation is deemed converged. Timings for typical VM2 
iterations show that the conformational search and the computation of configuration 
integrals are bottlenecks (see red blocks in following diagram) and so are targeted for 
parallelization by distribution across multiple computer processors. 
 

 
These bottleneck steps can be further broken down into constituent tasks: 
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2. Parallelization strategy 
 
VM2 uses two parallelization approaches to address the identified bottlenecks above. The 
first, a coarse-grained parallelization, distributes the loops “i=1,N searches” and “j=1,L 
unique confs”, across Message Passing Interface (MPI) processes.(36) The MPI 
distributed tasks are each relatively large and require replicated memory. The second, a 
fine-grained parallelization approach, distributes smaller constituent tasks such as 
calculation of an energy-gradient (used in energy minimization of structures) or Hessian 
transformation and diagonalization (required for configuration integrals), across compute 
cores. This finer grained distribution across cores is most efficient with a shared memory 
approach, such as OpenMP. (37) 
 
We have pursued both coarse and fine-grained approaches, as each can be applied 
independently or combined to take best advantage of available hardware with respect to 
system size. For example, for systems where more than ~ 1000 atoms are allowed to be 
mobile, a purely coarse-grained replicated memory approach can lead to oversubscription 
to resources such as main memory and cache. If the two approaches are combined, 
however, the larger coarse-grained tasks are themselves parallelized using shared 
memory, thereby using less resources and using them more cooperatively.   
 
3. MPI coarse-grained parallelization 
 
3.1. Coupled MPI conformational search 
 
The “coupled” MPI implementation of VM2’s conformational search, in which processes 
continually compare the energies they have found, can exhibit super-linear speed up with 
respect to conformer throughput with the number of MPI processes. This is because the 
algorithm can sometimes, in effect, look ahead compared to the serial algorithm as a 
particular MPI process may happen to find a considerably lower energy conformer, and 
other MPI processes can then switch to searching from that structure. 
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3.2. Uncoupled MPI conformational search: introduction of diversity 
 
The coupled MPI conformational search procedure always communicates amongst the 
MPI processes which process had found the lowest energy conformer so all processes can 
then use it as a basis for the ongoing search. It was found that occasionally this approach 
led the search to stall before lower energy conformers were found. This problem was 
addressed by injecting conformer diversity through periodically assigning structurally 
different conformers to each MPI process and allowing them to be searched on 
independently. This is referred to as an “uncoupled” MPI conformational search in 
subsequent sections of this documentation. 

 
This combination of all processes working on the same conformers (coupled) and then 
periodically working on structurally diverse conformers independently (uncoupled) has 
been found to be very effective at finding low energy conformers. Various ways of 
assigning sets of conformers for coupled and uncoupled searches to the available  MPI 
processes at the start of each VM2 conformational search step have been implemented 
.(See Section VIII 7.) 
 
3.3. Non-blocking MPI communication 
 
The coupled MPI implementation of the conformational search requires periodic 
communication of the lowest energy structure found between processes by use of MPI 
collective communication routines (e.g. MPI_ALLREDUCE), which results in a 
synchronization event between all MPI processes. For MPI VM2 protein-ligand 
calculations this leads to processes falling idle for significant amount of time while 
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waiting for other processes to “catch up” before the collective communication canoccur. 
Therefore, an approach using non-blocking MPI calls was implemented, which allows 
processes to communicate their lowest energy conformers with other processes without a 
synchronization event. 
 
4. Fine-grained parallelization 
 
The figure below summarizes tasks in the VM2 algorithm targeted, based on profiling, 
for fine-grained parallelization. Scaling with respect to the number of atoms included in 
the calculation (mobile as well as those fixed in space) is also shown. 
 

 
Shared-memory fine-grained parallelization of the routines associated with these tasks for 
both standard CPU multicore architectures using OpenMP and for GPU multicores using 
CUDA (https://developer.nvidia.com/cuda-zone) has been carried out. Energy 
minimization (i.e. geometry optimization) and mode scanning tasks are sped up by calls 
to shared-memory parallelized molecular mechanics plus Generalized Born solvation 
related energy and energy-gradient routines, transformation and diagonalization of the 
Hessian is addressed by use of calls to fine-grained parallelized linear algebra routines, 
and the PBSA energy correction is sped up by fine-grained parallelization of routines 
specified below (Section 4.1.3.).  
 
4.1. OpenMP 
 
4.1.1. OpenMP fine-grained parallelization of GB energy-gradient 
 
OpenMP parallelization of energy-gradient routines, including those related to 
Generalized Born solvation terms, have been implemented by distribution of the inner 
loop of the atom-pair loop across cores. At the same time the inner loop takes advantage 
of cache blocking and vectorization via use of highly optimized vector math libraries e.g. 

https://developer.nvidia.com/cuda-zone
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https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-
functions . 
 
4.1.2 OpenMP parallelization of Hessian transformation and diagonalization 
 
OpenMP fine-grained parallelization of the transformation of the Cartesian coordinate 
Hessian to matrix to bond-angle-torsion (BAT) coordinates and diagonalization is 
achieved by calls to appropriate parallelized linear algebra routines.   
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-
with-threading  
 
4.1.3 OpenMP parallelization of PBSA 
 
Profiling of the PBSA energy calculations carried out during VM2 calculations revealed 
that the boundary condition, modified incomplete Cholesky conjugate gradient (ICCG) 
solver, and energy-from-dielectric-boundary routines are where the majority of time is 
spent. OpenMP parallelization of the boundary condition and energy-from-dielectric-
boundary routines has been carried out. Work is ongoing to OpenMP parallelize the 
solver step. 
  
4.2. CUDA 
 
4.2.1. CUDA based fine-grained parallelization of the GB energy-gradient 
 
CUDA parallelization of energy-gradient routines, including those related to Generalized 
Born solvation terms, has been implemented and integrated with the VM2 quasi-Newton 
and conjugate gradient geometry optimization algorithms. 
 
4.2.2. CUDA parallelization of Hessian transformation and diagonalization 
 
CUDA parallelization of the transformation of the Cartesian coordinate Hessian to matrix 
to bond-angle-torsion (BAT) coordinates and diagonalization is implemented via calls to 
the Matrix Algebra on GPU and Multicore Architectures library. 
http://icl.cs.utk.edu/magma/  
 
5. Combined coarse grained – fine grained parallelization of VM2 
 
The parallel processor capabilities described above, namely a coarse-grained MPI 
implementation of VM2 and fine-grained parallelization of various VM2 constituent 
methods provide the infrastructure for a combined coarse grained-fine grained VM2 
capability that can make optimal use of computer clusters regardless of the calculation 
size i.e. atom count.  
 

https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://software.intel.com/en-us/mkl-developer-reference-c-vector-mathematical-functions
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-with-threading
https://software.intel.com/en-us/mkl-windows-developer-guide-improving-performance-with-threading
http://icl.cs.utk.edu/magma/
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5.1. MPI-OpenMP 
 
The MPI-OpenMP combined package is suitable for running calculations on workstations 
and clusters of workstations. 
 
5.2. MPI-CUDA and MPI-OpenMP-CUDA 
 
The MPI-CUDA and MPI-OpenMP-CUDA packages are suitable for running calculations on 
workstations and clusters of GPUs with multiple GPUs.  
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V. Molecular system and input data file preparation 
 
1. Molecular systems 

 
VM2 can, in principle, be applied to any molecular system - size restrictions 
notwithstanding. The restriction in the currently available packages to standard classical 
molecular mechanics force fields does, however, preclude its use to describe bond 
breaking or excited state molecular processes. 
 
The VM2 package suite has been tested for, and applied to, ligand molecules, protein 
macromolecules, protein-ligand complexes, host molecules, and host-ligand complexes.  
 
1.1. Ligands 
 
In the context of VM2 calculations, ligands are molecules ranging from a few atoms to 
usually no more than one hundred atoms, and with a current enforced limit of three 
hundred atoms. All license levels of the VM2 software package are ligand calculation 
capable. 
 
VM2 offers very exhaustive conformational sampling for ligand molecules, which results 
in the reliable determination of global minima for the particular molecular mechanics 
energy potential in use. It also provides a Boltzmann distribution of ligand conformations 
in solvent. For large “floppy” ligands this is essential to accurately determine loss of 
entropy on binding. 
 
Figure. 
 
 
 
 
  
1.2. Proteins 
 
Protein macromolecules range from hundreds to tens of thousands of atoms. Unlike most 
software packages for calculation of molecular properties of proteins, VM2 does not use 
molecular dynamics methodology. Instead, as outlined in Section I, VM2 is an end-point 
based method and therefore employs very robust conformational searching of mobile 
protein atoms. This can be useful in various scenarios, in addition to the main focus of 
binding energy calculations, including full relaxation of chains that have been grafted on 
to incomplete structures. 
 
1.3. Protein-ligand complexes 
 
The accurate prediction of relative binding affinities of small molecules (ligands) to 
protein active sites is the central goal of the VM2 software package. 
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1.4. Host-ligand complexes 
 
Host molecules such as cyclodextrin or cucurbituril can provide useful models to study 
binding affinity models. Due to their relatively small size, the conformational sampling 
burden, while still present, is less than for protein systems leading to much faster 
turnaround of calculations. As such, repeated rounds of calculations to study effects of 
various aspects of energy potentials can be carried out with modest computational cost. 
 
In addition, the accurate prediction of binding affinities of ligand (or guest) molecules to 
hosts is useful in many applied research areas: drug discovery, enantiomeric separation 
science, chemical pollutant removal, and scavengers for chemical warfare agent removal, 
are examples. 
 

 
 

2. Molecular system data sources 
 
There are numerous sources that provide molecular data that can be a starting point for 
computational studies or research projects using the VM2 package. The following are 
commonly used. 
 
2.1. The Protein Data Bank (PDB) 
 
The PDB (http://www.rcsb.org/pdb/home/home.do) is repository of over one hundred 
thousand biological macromolecular structures. Many of the macromolecular structures 
contain co-crystalized ligands, providing an indication of, for example, a particular 
protein’s active site. 
 
The PDB provides structural data files for download in the PDB and CIF formats. 
 
2.2. The Cambridge Crystallographic Data Centre (CCDC) 

http://www.rcsb.org/pdb/home/home.do
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The CCDC (http://www.ccdc.cam.ac.uk/pages/Home.aspx) is a leading provider of small 
molecule crystal structure data. Over 875,000 fully curated entries are available for 
download in CIF format. 
 
2.3. The Binding Data Base (BindingDB) 
 
From the website the BindingDB (https://www.bindingdb.org/bind/index.jsp) is “a 
public, web-accessible database of measured binding affinities, focusing chiefly on the 
interactions of protein considered to be drug-targets with small, drug-like molecules.” It 
currently contains over 1,346,000 entries, for ~7,100 protein targets and ~ 600,000 small 
molecules. 
 
Structural data as well as binding affinity data are available for download in various 
formats. This includes computationally docked conformations of congeneric series of 
ligands with their targets https://www.bindingdb.org/bind/surflex_entry.jsp . 
 
 2.4. Chemical components in the PDB (PDBeChem) 
 
From the website the PDBeChem (http://www.ebi.ac.uk/pdbe-srv/pdbechem/) is a 
dictionary of chemical components – ligands, small molecules, and monomers – referred 
to in PDB entries. There are currently over 24,000 entries. A comprehensive search 
facility is provided. 
 
The entries provide downloads of the component in multiple formats e.g. .mol, .mol with 
hydrogen atoms added (idealized structure), .pdb (ideal representation), mmCIF, CML, 
SMILES, etc. 
 
2.5. ZINC: free database of commercially available compounds 
 
From the website, http://zinc15.docking.org, ZINC “contains over 100 million 
purchasable compounds in ready-to-dock, 3D formats.” 
 
The ZINC database (38) integrates and curates biological activity, chemical property, and 
commercial availability data for small molecules from public sources. In addition, 
calculated properties are added into a chemistry-aware relational database. It is an easy to 
use GUI for database interrogation and 3D structures for all molecules may be 
downloaded in mol2 and sdf formats, with biologically relevant tautomers and 
protonation states available for each compound. 
 
3. Molecular system preparation steps and computational model choices 
 
Once molecular data from one or more of the above sources is obtained, further 
preparation steps are required. These steps may include manipulation; for example, 
removal of some atoms and addition of others, to achieve chemistry related preferences 
such as particular protonation states. Specific step-by-step examples are described in 
Sections IX through XI: the following gives a general overview of potential issues and 
choices to be made. 
 

http://www.ccdc.cam.ac.uk/pages/Home.aspx
https://www.bindingdb.org/bind/index.jsp
https://www.bindingdb.org/bind/surflex_entry.jsp
http://www.ebi.ac.uk/pdbe-srv/pdbechem/
http://zinc15.docking.org/
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3.1. Proteins 
 
Often the starting point for a protein model preparation will be a PDB file downloaded 
from the Protein Data Bank (see Section 2.1 above). A first step is to visualize and 
examine the protein using one of the many available graphical viewers that support the 
PDB format. Examples include UCSF Chimera, (39)VMD, (40) Discovery Studio 
Visualizer, and Maestro. If a co-crystallized ligand is present this provides the location of 
the binding site, which is useful information for set up of VM2 calculations of ligand 
binding affinities with this target. Visual examination may also indicate obvious 
problems such as chain breaks; other more subtle issues may be present such as incorrect 
stereochemistry of peptide bonds, which will require the use of interrogation methods 
these visualizers have available.  
 
PDB submissions are not designed nor curated with facilitation of molecular modeling as 
a goal. As such, no attempts are made to “correct” issues that arise when areas of electron 
density cannot be resolved into structure. Therefore, issues such as missing side chains, 
no hydrogen atoms, incorrect residue stereochemistry etc. must be explicitly considered 
and addressed by the VM2 user. Furthermore, certain user decisions will affect how well 
the model will ultimately perform in binding free energy calculations. Example decisions 
include how to treat metal centers, which, if any, of the solvent molecules or ions present 
in the PDB file to retain in the calculation, what residue protonation states to choose, 
which atoms to make mobile and which atoms to include in the calculation but fix in 
space (see Section I 1.11), what force field to use, and how to deal with non-standard 
protein residues. Further details of potential problems and user decisions now follow. The 
graphical viewers mentioned above have tools that can aid users in this process; an 
additional non-visual package is PDBFixer. 
 
3.1.1. Missing side chains 
 
If residue side chains are found to be missing they can either be added in their ideal 
geometry, or through rotomer libraries, to the system before typing and parameter 
assignment. If, however, they are very far away from the binding site or potentially will 
not even be present in the real/live set, they can be capped as GLY. The idealized 
geometry of any added side chain should be relaxed during the setup process.  
 
3.1.2. Non-standard amino acids 
 
If non-standard amino acid residues are present if parameters exist they should typed and 
parameterized accordingly, if parameters do not exist and the residue is far from the 
active site it may be simply swapped out for a standard residue. If the residue is close to 
the active site it should be typed and charged using a generalized scheme.  
 
3.1.3. Chain breaks 
 
If a chain break occurs near the binding site or in a loop that plays an important role then 
the missing residues should be added. As for missing side chains, if the chain break is 
very far away from the binding site and likely to be fixed in space or even not present in 
the real/live set then the termini of the break can be capped. 
 

http://htmlpreview.github.io/?https://raw.github.com/pandegroup/pdbfixer/master/Manual.html
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3.1.4. Hydrogen addition 
 
Most PDB files do not contain hydrogen atoms and they must be added appropriately. 
They may be added in idealized positions with idealized bond lengths etc. and relaxed 
during the setup process. Note that the PDB standard hydrogen atom-naming scheme is 
not identical to the naming scheme used by some preparation and typing tools.   
 
3.1.5. Stereochemistry 
 
Stereochemistry errors that can occasionally occur are cis peptide bond arrangements and 
incorrect alpha-carbon parity. It is preferable these issues are detected and fixed during 
preparation stage. 
 
3.1.6. Metal centers 
 
If metal centers, e.g. zinc, magnesium, iron, copper, occur far away from the binding site 
or even fall outside the ‘real’ set then minimal effort with respect to parameterization is 
required as they can be assigned unit charges e.g. Zn2+, Mg2+ and possibly zero force 
constant bonds. However, if metal centers are nearby the binding site it is highly 
recommended that if parameters have not already been established for the particular 
binding motif of the metal, that efforts through electronic structure calculations etc. are 
made to assign appropriate charges, and force constants. 
 
3.1.7. Solvent and ions 
 
Protein structures in the PDB often include water with the water oxygen atoms indicating 
their positions. Ions can also be present. For VM2 binding affinity calculations the 
current recommendation is to remove all ions. With respect to water, the vast majority of 
water molecules should always be removed and often all the water molecules are 
removed. However, if it is recognized that certain water molecules in the binding pocket 
are playing a role in the binding of the co-crystalized ligand then such water molecules 
should be included in the VM2 calculation as part of the protein ‘live’ set. Users may 
want to utilize 3rd-party software that may algorithmically identify important water 
molecules in the binding site. 
 
3.1.8. Specific residue protonation states 
 
These are five ionizable protein residue types: Asp, Glu, His, Tyr, Lys. Their states are 
known at standard physiological pH 7.4, but the local pH in a binding pocket can vary 
according to the local structure. Also, it is possible that a ligand on binding will induce a 
change in the protonation state of binding pocket residues. Users may want to employ 3rd-
party software that attempts to predict protein system protonation states e.g. Propka. (41, 
42) 
 
3.1.9. Residue mutations 
 
For studies of the effect of residue mutations on protein-ligand binding affinities during 
the protein preparation removal of the current residue and replacement with the mutant 
residue is required with the associated atom renumbering etc.  
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3.1.10. Choice of protein real/live set 
 
The choice of protein atoms to include in the calculation (real atoms) and which of these 
should be mobile (live atoms) should be taken with care. Enough protein atoms should be 
live so the protein environment can adjust appropriately when the binding ligand is 
present. Furthermore, if the system under consideration contains a flexible loop that can 
affect the active site, as it the case for kinase systems, this loop should be mobile. Of 
course, the larger the real/live set is, the more computationally demanding a VM2 run 
will be, so choosing a real/live set that is larger than needed should also be avoided. 
Arriving at the correct balance in this regard sometimes requires a trial and error process. 
 
3.1.11. Protein atom typing and parameters 
 
As described in Section II VM2 supports various force fields types: AMBER, 
CHARMM, OPLS, and Dreiding. Tools for protein typing and parameter assignment 
include AmberTools,(43) UCSF Chimera,(39) VMD,(40) Discovery Studio Visualizer, 
OpenMM,(44) and Maestro. Additionally, VeraChem provides a tool for typing and 
assigning parameters for proteins. Several web-based tools also exist e.g. CHARMM-
GUI (45) and CHARMMing. (46) 
 
3.2. Host molecules and ligands 
 
Host molecules and especially ligand molecules provide further challenges with respect 
to preparation, typing, and parameter assignment, as in contrast to protein systems, where 
constituent amino acids are specifically characterized and preparation tools can take 
advantage of this pre-knowledge, generalized approaches must be used. Generalized 
preparation steps include hydrogen addition, protonation state assignment, bond order 
recognition, assignment of stereochemistry, and generalized typing and parameter 
assignment. 
 
3.2.1. Hydrogen addition 
 
Often source files do not contain information on hydrogen atoms for host and ligand 
molecules, in this case they must be added. 
 
3.2.2. Protonation states 
 
When adding hydrogen atoms, an important consideration is the possible protonation 
states as the choice of protonation state can have a large effect on predicted binding 
affinities. If pKa values are known for the ligand under consideration (or for a similar 
chemical motif) then this may be adequate for good choices. If no pKa values are 
available, the use of third-party software for prediction of protonation states can be 
considered. 
 
3.2.3. Bond order recognition 
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It is important to assign correct bond orders as this affects force field parameter 
assignment, and in addition the VM2 algorithms make use of bond order information 
when performing conformational searches and other procedures. 
 
3.2.4. Stereochemistry 
 
Care should be taken that the stereochemistry of the host and/or ligand molecule prepared 
is correct, as the VM2 algorithms will recognize the stereochemistry as supplied, and, if 
requested, maintain that stereochemistry throughout the calculation. 
 
3.2.5. General atom typing and parameters 
 
Atom typing and parameterization for general molecules remains a considerable 
challenge. There are now available packages for typing and parameter assignment of 
general molecules. A commonly used tool is antechamber, distributed with AmberTools, 
which can type and assign GAFF parameters for general molecules. The CGenFF 
program types and assigns parameters from the CGenFF parameter set.  
 
4. Mandatory formatted molecular data file generation 
 
Once the molecular systems are prepared as described above, the mandatory formatted 
molecular data files .crd, .top, and .mol/.sdf must be generated (see Section VI.2.). 
Usually the tools employed for the molecular system preparation will provide other 
formatted files such as .psf or .prmtop, which must then be converted to the required 
formats by VeraChem supplied scripts. There follows outlines of preparation/conversion 
routes currently available. 
 
5. System and data file preparation routes 
  
Currently, there are four established routes for molecular system preparation and 
subsequent VM2 input data file preparation. Three routes use VeraChem scripts to 
convert third-party software produced data files to VeraChem format input files, the 
remaining route is through VeraChem’s own preparation and typing tools.  
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The basic steps for each route are now described. For step-by-step specific examples see 
Sections IX – XI. 
 
5.1. Route 1: Conversion of Amber style input files 
 
For protein molecules any preparation and typing software tools that produce the Amber 
.prmtop and .inpcrd files are suitable; examples, which will be discussed in more detail 
below are AmberTools software, UCSF Chimera, and OpenMM. These Amber formatted 
files are used as input for VeraChem’s conversion tool. The following is an example of 
usage:  
 
------------------------------------------------------------------------------------------------------------ 
$VCPYTHON $VCHOME/exe/prm2top.pyc -prm protein.prmtop -crd protein.inpcrd -
protein >& log.out 
------------------------------------------------------------------------------------------------------------ 
 
The .top, .mol, and .crd files required to run VM2 are written out and any warnings 
appear in log.out. 
 
For ligands/host molecules if a high quality .mol2 file is already available it can be 
immediately used in conjunction with the tools mentioned above, namely AmberTools, 
UCSF Chimera, and OpenMM, which can type and assign parameters via Antechamber 
and output .prmtop and .inpcrd files for the ligand.  
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However, if, for example, the user is starting only with a chemical formula and is 
sketching a 2-D structure, or is starting with a SMILES string or 2-D .sdf/.mol file, a 
reliable conversion to a 3-D structure, with addition of hydrogen atoms, assignment of 
bond orders and stereochemistry, and generation of an associated .mol2 formatted file, is 
required before proceeding with the .prmtop and .inpcrd file generation. 
 
Software that can be used to sketch 2D structures include …… Software that can read in 
SMILES strings and convert to 3D include …. Software that can convert 2D mol/sdf files 
to 3D include …. 
 
Once the .prmtop, .inpcrd, and .mol2 files are available as for the protein case they are 
used as input for VeraChem’s conversion tool to produce the required .top, .mol, and .crd 
files: 
 
------------------------------------------------------------------------------------------------------------ 
$VCPYTHON $VCHOME/exe/prm2top.pyc -prm ligand.prmtop -crd ligand.inpcrd -
mol2 ligand.mol2 >& log.out 
------------------------------------------------------------------------------------------------------------ 
 
5.1.1. AmberTools 
 
See ambertools test directory for 1ke5... look at the run.sh scripts in each of the 
subdirectories.. (also note that the ligand can be in mol format as well, not just pdb as is 
the case in the write up). 
 
For proteins: 
tleap -s -f protein_leap.in >& log.out 
 
For ligands the sequence is 
 
ligand_antechamber 
antechamber -i ligand.mol -fi mdl -o ligand.mol2 -fo mol2 -c bcc -s 2 -df 2 -nc 0 -j 5 -dr 
no >& log.out 
 
ligand_parmchk 
parmchk -i ligand.mol2 -f mol2 -o frcmod >& log.out 
 
ligand_tleap 
tleap -s -f ligand_leap.in >& log.out 
 
Where ligand_leap.in is: 
 
verbosity 1 
source leaprc.gaff 
mods = loadamberparams frcmod 
MOL = loadmol2 <ligand>.mol2 
list 
saveamberparm MOL <ligand>.prmtop <ligand>.inpcrd 
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quit 
 
and <ligand> must be replaced with the actual name of the ligand. For example 
umass_1_ad_23, ad_81, etc. 
 
The prepareLigands.pyc script automates this process to allow the preparation of an 
entire set of ligands contained in a single sdf file. The steps above are executed for each 
ligand in the file in order. It is also possible to specify a range of ligands within the sdf to 
process. It is important that the ligands in the sdf file have all hydrogens present, 
stereochemistry defined with parity values, and correct formal charges. The complete 
Protein – ligand example that is included later in this document provides an example of 
its use. 
 
5.1.2. UCSF Chimera 
 
The visualization and analysis package UCSF Chimera (39) 
 
5.1.3. OpenMM 
 
The open source toolkit OpenMM (44) …… 
 
5.2. Route 2: Conversion of CHARMM style input files 
 
protein 
$VCPYTHON  $VCHOME/exe/psf2top.pyc -psf protein.psf -crd protein.sd >& log.out 
 
Ligand 
$VCPYTHON  $VCHOME/exe/psf2top.pyc -psf ligand.psf -crd ligand.sd >& log.out 
 
 
5.2.1. Discovery Studio Visualizer 
 
The BIOVIA Discovery Studio Visualizer is a freely available graphical visualization 
tool: http://accelrys.com/products/collaborative-science/biovia-discovery-
studio/visualization.html. Discovery Studio Visualizer (DSV) supports the import and 
export of common molecular data file formats e.g. PDB, crd, mol2, sdf etc., and it also 
provides tools for building and manipulating small molecules and macromolecules. DSV 
provides a convenient path for building/loading/editing molecules and outputting data 
files that can then be read by VeraChem’s conversion scripts, which then output the 
required input files to run VM2 calculations. 
 
The following provides a brief step-by-step description of how to generate VM2 input 
data files using the DSV pathway. 
 
Step 1: Import or use DSV to build your target molecular system e.g. small molecule or 
protein. 
 
Step 2: Use DSV to visualize and edit your molecular system as required e.g. correct 
bond orders, add missing side-chains etc. 

http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html
http://accelrys.com/products/collaborative-science/biovia-discovery-studio/visualization.html
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Step 3: For small molecules, e.g. ligands and/or host molecules, if required, refine the 
structure using the Clean Geometry option in DSV under the Structure top menu item. 
 
Step 4: Under the Tools top menu item select Simulation and then in the resulting sub-
menu select Change Forcefield. This will bring up the following force field options in 
the far left panel: Forcefield, Forcefield Status, and Forcefield Customization. Under 
the Forcefield option select a CHARMm or charmm option and then press the Apply 
Forcefield button. The Forcefield Status should then be indicated as typed. 
 
Step5: Save the required formatted files: .crd, .psf, .sd, and .mol2. To do this, go to the 
File top menu item, select the option Save As, and then select CHARMm Simulation 
Files as the Save as Type. The extension you provide will determine format of the file; 
i.e., if you specify 1hvr.crd it will output a crd file, and if you specify 1hvr.psf, a psf will 
be written even though the Save as Type remains the same. 
 
Step 6: Check the .sd file to make sure that it contains a ffml data block. If no parameters 
had to be estimated it will be empty, e.g. 
 
----------------------------------------------------------------------------------------------------------- 
> <ForcefieldFFML> 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE ffml SYSTEM "Ffml.dtd"> 
<ffml version="1.0"> 
<forcefield name="1HVR-CHARMm" derivedFrom="CHARMm" base="CHARMm"> 
<atomTypes> 
</atomTypes> 
<parameters> 
</parameters> 
</forcefield> 
</ffml> 
 
$$$$ 
----------------------------------------------------------------------------------------------------------- 
 
If there are estimated parameters they will appear as in the following example: 
 
----------------------------------------------------------------------------------------------------------- 
> <ForcefieldFFML> 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE ffml SYSTEM "Ffml.dtd"> 
<ffml version="1.0"> 
<forcefield name="1HVR-CHARMm" derivedFrom="CHARMm" base="CHARMm"> 
<atomTypes> 
</atomTypes> 
<parameters> 
<bond atom1="SO1" atom2="OT"> 
<quadratic 
 refValue="1.55" 
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 forceConstant="220"/> 
</bond> 
<angle atom1="CT" atom2="SO1" atom3="OT"> 
<quadratic 
 refValue="107" 
 forceConstant="66"/> 
</angle> 
<angle atom1="SO1" atom2="OT" atom3="HO"> 
<quadratic 
 refValue="109.147" 
 forceConstant="51.3667"/> 
</angle> 
<torsion atom1="CT" atom2="SO1" atom3="OT" atom4="HO"> 
<multiplecos 
 v1="0" 
 v2="0" 
 v3="0.2" 
 v4="0" 
 v5="0" 
 v6="0" 
 gamma1="0" 
 gamma2="0" 
 gamma3="0" 
 gamma4="0" 
 gamma5="0" 
 gamma6="0"/> 
</torsion> 
</parameters> 
</forcefield> 
</ffml> 
 
$$$$ 
----------------------------------------------------------------------------------------------------------- 
 
If this block is not present save an ffml file with the information directly by selecting the 
More option under Forcefield Status in the far left panel. 
 
Step 7: Conversion to VM2 input files via VeraChem scripts. First, the environment 
variable VCDSPATH must be set to the location of the CHARMm forcefield files from 
your installation of Discovery Studio Visualizer. (For the 2016 version on the PC this is 
DiscoveryStudio_2016/share/forcefield/CHARMm.) Then invoke the conversion scripts 
as follows: 
 
Ligand 
$VCPYTHON  $VCHOME/exe/psf2top.pyc -psf ligand.psf -crd ligand.sd >& log.out 
 
protein 
$VCPYTHON  $VCHOME/exe/psf2top.pyc -psf protein.psf -crd protein.sd >& log.out 
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The seven step process just described will produce the .crd, .top, and .mol files required 
to run VM2 calculations. 
 
5.2.2. CHARMMing 
 
The CHARMMing website interface … 
 
5.2.3. CHARMM-GUI 
 
An alternative web-based tool is the CHARMM-GUI … 

 
5.3. Route 3: Maestro/Macromodel (OPLS2005) 
 
VeraChem provides a python script that parses a Schrodinger Inc. formatted .mmo data 
file and outputs the .crd, .top, and .mol/.sdf files required to run VM2 calculations. 
 
Access to the 3rd-party software Maestro and Macromodel is required. The Maestro 
graphical user interface is used to prepare molecules e.g. hydrogen addition etc. and 
MacroModel is required for the final generation of an .mmo file for conversion. 
 
5.3.1. System Preparation and Generation of MMO files 
 
 (1) From the Maestro tool bar, select Workflows -> Protein Preparation Wizard. 
  In the wizard: 
      Load structure to workspace; 
      Use all default values for ligands; for protein, select "Cap termini"; 
      Click "Preprocess"; 
      On Page "Review and Modify", delete unwanted waters and Hets from the  
      lists for proteins. 
 
(2) From the tool bar, select Application -> MacroModel -> Current Energy  
  On page "Potential": 
      Select force field as OPLS2005; 
      Set solvent to "none"; 
      Set cutoff to "none" for ligands and to "normal" for proteins; 
  On page "Ecalc": 
      Set energy list to "complete"; 
      Click "Start", give a name for the MMO file to output. 
 
5.3.2. Conversion of MMO files to .crd, .top, and .mol/.sdf 
 
Then you would run 
 
$VCPYTHON $VCHOME/exe/mmo2top.pyc ligand.mmo >& log.out 
 
$VCPYTHON $VCHOME/exe/mmo2top.pyc protein.mmo >& log.out 
 
To generate the crd, top, and 'mol' files 
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5.4. VeraChem preparation tools 
 
VeraChem supplies its own for PDB/CIF file parsing, protein preparation, protein atom 
typing and parameter assignment, and .crd, .top, and .mol file generation.  
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VI. Running VM2 calculations 
 
To run VM2 package calculations an input file (.inp), which sets calculation options, 
three molecular/force field data files (.crd, .top, .mol/.sdf), and a run script are always 
required. Additional data files may be required depending on the chosen molecular 
system type as well as other specific user choices. The following provides a summary of 
basic requirements, which are covered in more detail further below. 

 
All files are, except where explicitly stated, ASCII text files. A description of their roles 
and content now follows. 
 
1. Mandatory input file (.inp) 
 
The mandatory input file must have the .inp suffix. It contains keywords and associated 
options that control the calculation. The following is a very simple example for a ligand 
VM2 calculation that uses only program defaults. The only keywords/options shown are 
those user is required to supply. The hash sign ‘#’ tells the parser not to read that 
particular line. It can be used to add comments, but is also required at the transition 
between keywords. See Section VIII for a full list of input keywords/options and 
example usage. 
 
# 
molSystemType 
ligand 
# 
calcnType 
vm2 
# 
inputLigand 
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1 
~/path/ligand_name.crd  
~/path/ligand_name.top  
~/path/ligand_name.mol 
# 
end 
 
The following is a screen shot of a more complex .inp file for a protein-ligand VM2 
calculation. 
 

 
 
2. Mandatory data files 
 
The three mandatory data files .crd, .top, .mol supply molecular data and force field data 
to the program.  
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2.1. .crd file 
 
This is the standard CHARMM format card file. See the following link for format details 
 
 https://www.charmm.org/charmm/documentation/by-version/c40b1/params/doc/io/#Top 
 
It is used to supply VM2 the initial molecular geometry, residue names and IDs, and 
IUPAC protein atom names. (47) For host and ligand molecules reasonable atom names 
are sufficient. 
 
2.2. .top file 
 
This is a VeraChem formatted file. This file provides atomic masses, atomic partial 
charges, the Lennard-Jones parameters rmin and ε. Additionally, it defines the molecule’s 
topology (bonds, angles, proper and improper dihedrals) and provides the associated 
force constant parameters. See section II for the .top file format specification and Section 
XII for a specific example.    
 
2.3. .mol/.sdf file 
 
This is a standard and widely used format originally developed at Molecular Design 
Limited. (48) This file provides atom parities, bond orders, and stereochemistry to the 
VM2 package. This information use in VM2 includes determination and maintenance of 
stereochemistry, reduction of torsional search space, and correct output of other 
descriptive molecular formats.  
 
3. Optional data files 
 
3.1 Formatted file defining atoms/points in space used for automatic generation of 
protein real/live sets 
 
The user supplies a formatted file that defines atoms or points in space – these 
atoms/points are usually within the protein binding pocket, and could, for example, 
represent the co-crystalized ligand. In the .inp file, the user also supplies cutoff distances 
relative to these atom positions/points in space that are used to determine which atoms 
are in the real/live atom regions. The software outputs an associated formatted text file 
(see 3.2 below) that defines these regions, which can then be read in for any subsequent 
calculations so importantly the exact same real/live protein atom set can reproduced for a 
series of protein-ligand complexes. Allowed formats are .crd, .xyz, .sdf, .mol, .pdb, and 
Macromodel .dat. 
 
3.2. Formatted text file that explicitly defines fixed and mobile atoms 
 
The user can generate this VeraChem formatted file or can use one programmatically 
generated - see 3.1 above. An example name could be 
 

real_live_atoms.txt 

https://www.charmm.org/charmm/documentation/by-version/c40b1/params/doc/io/#Top
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See section XII 2. for the “real_live_atoms.txt” file format specification.    

 
3.3. Formatted file containing atoms to be constrained 
 
A VeraChem formatted file that lists atoms that will have energy constraints applied to 
them. An example name could be 
 
 constrained_atoms.txt 
 
See section XII 3. for the “constrained_atoms.txt” file format specification. 

 
3.4. Formatted file containing atoms to be excluded from conformational searches 
 
A file that lists atoms that if found in a mode based search driver cause that driver to 
excluded from the set used in the Vconf conformational search procedures. An example 
name could be 
 
 excluded_driver_atoms.txt 
 
See section XII 4. for the “excluded_atoms.txt” file format specification.  
 
3.5. Standard format files containing coordinates of previously generated molecular 
conformers 

The standard formatted file types .xyz, .sdf, .mol, Macromodel .dat, and .crd containing 
previously generated conformers may be read in to provide a starting point for a new 
calculation. 

3.5.1 Ability to read in multiple conformers to initiate runs 
 
As described earlier, the VM2 algorithm relies on the generation of low energy 
conformers of the molecular system. Determining the lowest energy conformations of a 
system can sometimes require a multistep process. To this end, VM2 has the capability to 
read in sets of conformers via formatted text files, so conformers from previous VM2 
runs, or indeed conformers generated by third-party software, can be used to initiate new 
runs. These conformers can, if desired, be simply processed to provide a free energy 
value or may serve as a starting point for a full VM2 iterative calculation. 
 
For protein-ligand molecular systems, the user can choose to read in only ligand or only 
protein conformers, and the software will construct protein-ligand conformations, by 
pairing with the basic set up protein and each ligand structure, respectively.  
 
An example use of this is for congeneric series of ligands where the ligand scaffold 
position in the active site is known and is kept fixed in position, conformers are then 
generated that sample different R-group positions.  
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Confgen figure here … 
 
 
 
 
 
 
 
These separately generated ligand conformations are then read in for generation of 
protein-ligand starting conformations, speeding up the search for low energy protein-
ligand conformations. 
 

 
Another example is the case where nothing is known about a ligand pose in the binding 
site. In this case, a conformer generation setting can be used to generate ~ 20 ligand 
conformers, which sample R-group positions, and then randomly rotate these conformers 
about their center of geometry to provide an ensemble of 1000 conformers that can be 
used to generate protein-ligand starting conformations for a VM2 run.  
 
Confgen4 figure here … 
 
 
 
 
 
 
 
4. Environment variables  
 
4.1. Placeholder 

 
 

4.2. Placeholder 
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4.3. Placeholder 
 
 
 
4.4. Placeholder 

 
 

5. Run scripts 

Example shell scripts for running VM2 calculations are presented below. In addition, as 
most computer clusters, whether at pharmaceutical companies, universities, or 
government laboratories require that calculations be submitted via a batch queue system, 
we also provide examples for common batch queue run scripts: Portable Batch System 
(PBS), Simple Linux Utility for Resource Management (SLURM), and Platform Load 
Sharing Facility (LSF). 
 
The run script examples assume the environment variable VCHOME is set elsewhere; 
other required environment variables are set in the scripts. For example, the 
OMP_NUM_THREADS, MKL_NUM_THREADS and I_MPI_PIN_DOMAIN 
environment variables are always set in the MPI and mixed MPI/OpenMP examples 
below. For runs with the purely serial VM2 executable, these variables would not be 
required.  The required environment variables can also be set in the user’s .bashrc or 
.cshrc file if preferred. 
 
5.1. Bash shell scripts 
 
To submit a calculation, where the bash script is called my_bash_script.bsh, issue the 
command 
 
 ./my_bash_script.bsh >& my_bash_script.log & 
 
5.1.1. Example 8 MPI process run 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# 
# Bash-shell script 
 
ulimit -s unlimited 
 
# Set locations and environment for Intel 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS 
export LD_LIBRARY_PATH 
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PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
export OMP_NUM_THREADS=1 
export MKL_NUM_THREADS=1 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
# Will run 8 MPI processes 
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
5.1.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per 
MPI process 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# 
# Bash-shell script 
 
ulimit -s unlimited 
 
# Designed to run on a node equipped with dual xeon 8 core processors  
# and 4 K80 Tesla cards (8 GPUs) 
 
# Set locations and environment for Intel and CUDA libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=2 
export MKL_NUM_THREADS=2 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
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# Will run 8 MPI processes and 2 OpenMP threads per process. 
# Also uses 8 GPUS. 
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 

------------------------------------------------------------------------------------------------------------ 
 
5.2. C-shell scripts 
 
The following are the C-shell equivalents of the bash scripts in 5.1. above. To submit a 
calculation, where the C-shell script is called my_csh_script.csh, issue the command 
 
 ./my_csh_script.csh >& my_csh_script.log & 
 
5.2.1. Example 8 MPI process run using C-shell 
------------------------------------------------------------------------------------------------------------ 
#!/bin/csh 
# 
# C-shell script 
 
limit stacksize unlimited 
 
# Set locations and environment for Intel 
setenv INTEL_LIBS $VCHOME/lib/intel 
setenv INTEL_MKL_LIBS $INTEL_LIBS/mkl 
setenv INTEL_MPI_LIBS $INTEL_LIBS/mpi 
 
LD_LIBRARY_PATH=$INTEL_LIBS\:$INTEL_MKL_LIBS\:$INTEL_MPI_LIBS 
setenv LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS\:$PATH 
setenv PATH 
 
setenv OMP_NUM_THREADS 1 
setenv MKL_NUM_THREADS 1 
setenv I_MPI_PIN_DOMAIN omp 
setenv KMP_STACKSIZE 16m 
 
# Set VM2 executable to use 
set VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe 
 
# Set VM2 input and output file names 
set VC_IN_FILE=protein_ligand_vm2.inp 
set VC_OUT_FILE=protein_ligand_vm2.out 
 
# Will run 8 MPI processes 
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
5.2.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per 
MPI process, using C-shell 
------------------------------------------------------------------------------------------------------------ 
#!/bin/csh 
# 
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# C-shell script 
 
limit stacksize unlimited 
 
# Designed to run on a node equipped with dual xeon 8 core processors  
# and 4 K80 Tesla cards (8 GPUs) 
 
# Set locations and environment for Intel and CUDA libraries 
setenv INTEL_LIBS $VCHOME/lib/intel 
setenv INTEL_MKL_LIBS $INTEL_LIBS/mkl 
setenv INTEL_MPI_LIBS $INTEL_LIBS/mpi 
 
CUDA_LIBS=$VCHOME/lib/cuda\:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS\:$INTEL_MKL_LIBS\:$INTEL_MPI_LIBS\ 
:$CUDA_LIBS 
setenv LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS\:$PATH 
setenv PATH 
 
# Set number of OpenMP threads to run per MPI process 
setenv OMP_NUM_THREADS 2 
setenv MKL_NUM_THREADS 2 
setenv I_MPI_PIN_DOMAIN omp 
setenv KMP_STACKSIZE 16m 
 
# Set VM2 executable to use 
set VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe 
 
# Set VM2 input and output file names 
set VC_IN_FILE=protein_ligand_vm2.inp 
set VC_OUT_FILE=protein_ligand_vm2.out 
 
# Will run 8 MPI processes and 2 OpenMP threads per process. 
# Also uses 8 GPUS. 
nohup mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 

------------------------------------------------------------------------------------------------------------ 
 
5.3. PBS batch queue scripts 
 
The following are PBS batch queue scripts initiate the equivalent runs to those the bash 
scripts in 5.1. initiate. To submit a calculation, where the PBS script is called 
my_pbs_script.pbs, issue the command 
 
 qsub my_pbs_script.pbs 
 
5.3.1. Example 8 MPI process PBS run 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
#PBS -q default 
#PBS -N test 
#PBS -l nodes=1:ppn=8 
#PBS -o test.out 
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#PBS -e test.err 
 
ulimit -s unlimited 
 
# Set location and environment for Intel libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=1 
export MKL_NUM_THREADS=1 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
cd $PBS_O_WORKDIR 
 
# Will run a total of 8 MPI processes on a single node 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
 
5.3.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per 
MPI process, using PBS 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# Modify to match local setup 
# This script has not been tested 
#PBS -q default 
#PBS -N test 
#PBS -l nodes=1:ppn=16 
#PBS -o test.out 
#PBS -e test.err 
 
ulimit -s unlimited 
 
# Designed to run on a node equipped with dual xeon 8 core processors    
# and 4 K80 Tesla cards (8 GPUs)     
 
# Set location and environment for Intel and CUDA libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
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CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=2 
export MKL_NUM_THREADS=2 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
cd $PBS_O_WORKDIR 
 
# Runs 8 MPI processes with 2 OpenMP threads per processes.  
# Also uses 8 GPUs, all on a single node. 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 

------------------------------------------------------------------------------------------------------------ 
 
 

5.4. SLURM batch queue scripts 
 
Below are SLURM batch queue scripts equivalent to the PBS scripts in 5.3. above. To 
submit a calculation, where the SLURM script is called my_slurm_script.sh, issue the 
command 
 
 sbatch my_slurm_script.sh 
 
5.4.1. Example 8 MPI process SLURM run 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# Modify to match local setup 
# This script has not been tested 
#SBATCH --partition=default 
#SBATCH --job-name=test 
#SBATCH --ntasks=8 
#SBATCH --ntasks-per-node=8 
#SBATCH --output=test.out 
#SBATCH --error=test.err 
#SBATCH --export=NONE 
 
ulimit -s unlimited 
 
# Set location and environment for Intel libraries 
INTEL_LIBS=$VCHOME/lib/intel 
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INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=1 
export MKL_NUM_THREADS=1 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
cd $PBS_O_WORKDIR 
 
# Will run a total of 8 MPI processes on a single node 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
5.4.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per 
MPI process, using SLURM 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# Modify to match local setup 
# This script has not been tested 
#SBATCH --partition=default 
#SBATCH --job-name=test 
#SBATCH --ntasks=16 
#SBATCH --ntasks-per-node=16 
#SBATCH --output=test.out 
#SBATCH --error=test.err 
#SBATCH --export=NONE 
 
ulimit -s unlimited 
 
# Designed to run on a node equipped with dual xeon 8 core processors 
# and 4 K80 Tesla cards (8 GPUs)     
 
# Set location and environment for Intel and CUDA libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
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export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=2 
export MKL_NUM_THREADS=2 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
# Runs 8 MPI processes with 2 OpenMP threads per processes.  
# Also uses 8 GPUs, all on a single node. 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
5.5. LSF batch queue scripts 
 
Below are LSF batch queue scripts equivalent to the PBS scripts in 5.3. above. To submit 
a calculation, where the LSF script is called my_lsf_script.sh, issue the command 
 
 bsub < my_lsf_script.sh 
 
5.5.1. Example 8 MPI process LSF run 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# 
# LSF batch script to run an MPI application 
# 
#BSUB -P project_code        # project code 
#BSUB -W 48:00               # wall-clock time (hrs:mins) 
#BSUB -n 8                   # number of tasks in job          
#BSUB -R "span[ptile=1]"     # run 8 MPI tasks per node 
#BSUB -J job_name            # job name 
#BSUB -o job_name.%J.out     # output file name in which %J is replaced 
by the job ID 
#BSUB -e job_name.%J.err     # error file name in which %J is replaced 
by the job ID 
#BSUB -q queue_name          # queue 
 
ulimit -s unlimited 
 
# Set location and environment for Intel libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
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# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=1 
export MKL_NUM_THREADS=1 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
# Will run a total of 8 MPI processes on a single node 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
5.5.2. Example 8 MPI processes, 2 OpenMP threads per MPI process, 1 GPU per 
MPI process, using LSF 
------------------------------------------------------------------------------------------------------------ 
#!/bin/bash 
# 
#BSUB -a poe                  # set parallel operating environment 
#BSUB -P project_code         # project code 
#BSUB -J hybrid_job_name      # job name 
#BSUB -W 48:00                # wall-clock time (hrs:mins) 
#BSUB -n 16                   # number of tasks in job 
#BSUB -R "span[ptile=8]"      # run eight MPI tasks per node 
#BSUB -q regular              # queue 
#BSUB -e errors.%J.hybrid     # error file name in which %J is replaced 
by the job ID 
#BSUB -o output.%J.hybrid     # output file name in which %J is 
replaced by the job ID 
 
ulimit -s unlimited 
 
# Designed to run on a node equipped with dual xeon 8 core processors 
# and 4 K80 Tesla cards (8 GPUs)     
 
# Set location and environment for Intel and CUDA libraries 
INTEL_LIBS=$VCHOME/lib/intel 
INTEL_MKL_LIBS=$INTEL_LIBS/mkl 
INTEL_MPI_LIBS=$INTEL_LIBS/mpi 
 
CUDA_LIBS=$VCHOME/lib/cuda:$VCHOME/lib/magma 
 
LD_LIBRARY_PATH=$INTEL_LIBS:$INTEL_MKL_LIBS:$INTEL_MPI_LIBS:$CUDA_LIBS 
export LD_LIBRARY_PATH 
 
PATH=$INTEL_MPI_LIBS:$PATH 
export PATH 
 
# Set number of OpenMP threads to run per MPI process 
export OMP_NUM_THREADS=2 
export MKL_NUM_THREADS=2 
export I_MPI_PIN_DOMAIN=omp 
export KMP_STACKSIZE=16m 
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export MP_TASK_AFFINITY=core:$OMP_NUM_THREADS 
 
# Set VM2 executable to use 
VC_FORTRAN_EXE=$VCHOME/exe/VC_CompChemPackage_mpi_openmp_cuda.exe 
 
# Set VM2 input and output file names 
VC_IN_FILE=protein_ligand_vm2.inp 
VC_OUT_FILE=protein_ligand_vm2.out 
 
# Runs 8 MPI processes with 2 OpenMP threads per processes.  
# Also uses 8 GPUs, all on a single node. 
mpirun -n 8 $VC_FORTRAN_EXE $VC_IN_FILE $VC_OUT_FILE 
------------------------------------------------------------------------------------------------------------ 
 
 
6. CloudVM2 – running VM2 on Amazon Web Services (AWS) cloud environment  
 
CloudVM2 has three main components: a GUI front-end program which can be installed 
on the user's machine or in the AWS cloud, a private cloud network with firewall on the 
AWS platform, and compute nodes running VM2 calculations. The front-end program 
starts the private cloud network and the compute nodes and then distributes calculations 
to them. 
 
6.1. Outline of CloudVM2 operation 

 
The user will have already selected a receptor (e.g. protein or host molecule) and one or 
possibly a whole series of ligands for which they need to calculate the binding free 
energy. They will run the CloudVM2 front-end program, which will then contact the 
Amazon Web Services cloud, and create a firewalled private cloud. The program will 
then temporarily transmit the data files to Amazon’s S3 data service.  Once data has been 
uploaded the GUI will start a compute node for each receptor, ligand, and each receptor-
ligand pair. Once the node is operational it will download the appropriate data files and 
delete them from temporary storage. The node will then start the calculations. Upon 
completion of the calculations, the node uploads the results back to S3 and is then 
terminated, stopping costs accruing for that node. The user can then download the results 
at their leisure via the GUI. 

 
6.2. Architecture and economics 
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CloudVM2 can take advantage of Amazon’s ‘spot instances’, which represent spare 
capacity on the AWS cloud that is sold to the highest bidder. The spot instances achieve 
an average savings of 75% (summer 2017) compared to normal ‘on-demand’ instances, 
the drawback to this is that AWS reserves the right to terminate a spot instance with 2 
minutes warning, so that they may sell it to another customer who is willing to pay the 
full retail price.  The CloudVM2 architecture is built to accommodate this with minimal 
loss of efficiency. CloudVM2 continually monitors the running instance for the 
termination signal, and when received it uploads the last calculation checkpoint file to 
fast local storage (S3) so that the calculation can be restarted. Automatic calculation 
restarts are planned for the next release of CloudVM2. 
 
Amazon Web Services is built on a worldwide infrastructure, with 15 major datacenters 
(increasing rapidly), each of which is divided into two or more ‘Availability Zones’. Each 
datacenter and each zone have different spot prices for each instance type, and these 
prices fluctuate continuously. CloudVM2 is aware of Amazon’s worldwide 
infrastructure, and scans all datacenters and all zones for current and historic spot prices, 
and will then launch computations in the datacenter and zone with the most economical 
predicted total cost. Data storage for each calculation is also located in the same 
datacenter for the quickest and most economical operation. 
 
6.3. CloudVM2 GUI 

 
The CloudVM2 GUI can be run locally on a system with Python 2.7 installed, or it can be 
hosted on a small, low cost instance in the AWS cloud.  The CloudVM2 GUI has three 
main functions: start a series of calculations, check status of compute nodes, and retrieve 
results.  
 
6.3.1. Main Menu 
 
The opening screen in CloudVM2 displays some helpful information and the main menu. 
Other than help info, no functionality is accessible from this screen. Depending upon the 
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user’s platform and terminal emulation application, CloudVM2 menu selections and 
entries can be accessed by ‘hotkeys’ (single letter shortcuts), mouse clicks, or arrow 
buttons. Not all terminal programs support all methods, but at the very least the ‘hotkeys’ 
should work. 
 
 
6.3.2. Start Menu 
 
The start menu allows the user to launch a VM2 calculation series on AWS.  The user 
must supply the path to the top-level directory of their series, relative to the user’s home 
directory. The user must also select a name for the series, and what size of node to run 
each calculation on. 
 

 
After selecting <(L) Launch>, CloudVM2 will download price data from AWS (this may 
take a couple minutes) and then start launching computational nodes sequentially. 
Information on the status of the launch will scroll down in the right hand data column. 
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6.3.3. Check Menu 
 
The check menu shows the user the current state of that user’s calculation nodes. 
Functionality to shutdown nodes launched in error will be included in the next release of 
CloudVM2. 
 

 
 
 
6.3.4. Retrieve Menu 
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The Results menu allows a user to inspect, download, and delete the results of their 
calculation series. After selecting a collection with the mouse, space, or enter keys, the 
user may select <View> to see the contents of the collection. From there the user may 

download the collection or delete it. 
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7. Front end workflow 
 
 
7.1. General scheme for ligand series and receptor binding 
 
 
 
7.2. Local clusters 
 
 
 
7.3. CloudVM2 
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VII. VM2 output files 
 
The VM2 method produces a wealth of information regarding the chemical system under 
study. In addition to the free energy G (Boltzmann averaged over all conformers), and its 
constituent energy <E> and entropic terms –TS, it provides a breakdown of <E> into 
internal potential energy <U> and solvation energy <W> terms, with <U> further broken 
down into molecular mechanics terms (bond, angle, torsion, vdW, and nonbonded 
energies). Furthermore, values for each individual conformer are available as well as 
molecular coordinates. 
 
1. VeraChem standard output files 
 
1.1. Verbose output file (.out) 
 
 Contains detailed description of all steps of the calculation. 
 

 
 



 84 

1.2. Summary output file (.summary.out)  
 
Contains a basic summary of the run, including energy tables. 
 

 
 
1.3. Binary restart file (.vcbin) 
 
At the conclusion of each VM2 iteration a binary restart file is written out to disk. 
 
Occasional crashes or downtime for maintenance can unexpectedly interrupt running 
calculations and waste large compute resources already devoted to a particular run. In 
addition, sometimes a run may not converge within the default maximum iterations and 
will need to be restarted at the last iteration carried out. To handle these fairly common 
situations, during Phase II we implemented a binary file restart capability for the parallel 
VM2 software. For each VM2 iteration a binary file is updated with energy and 
molecular coordinate data. If a run unexpectedly stops the binary file can be read in and 
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the calculation restarted at the last performed VM2 iteration. If a run does not converge 
the binary file may be read in and additional iterations requested; again the calculation 
starts at the last performed iteration in the original run.        
 
An option to read in a binary file from a VM2 run (either incomplete or complete) and 
output the users choice of formatted text data files (see previous sections) was also 
implemented. 

 
2. Formatted output files 
 
In order that users can explore this data conveniently using the many available (free and 
commercial) molecular visualization packages, we have continued to expand the range of 
formatted output files our VM2 software can output.  
 
2.1. Structural data 
 
.xyz Standard cartesian coordinate file 
.pdb Protein Data Bank format 
.crd Standard CHARMM card format 
.dat Macromodel Structure File format 
.sdf Structure Data File format 
.mol2 Tripos molecular data file format 
.gms Template GAMESS input file for each conformer 
.g09 Template GAUSSIAN09 input file for each conformer 
 
The .mol2 and .sdf formats include data for molecular visualization as well as energy 
data. For example, a .mol2 file read into the freely available Discovery Studio Visualizer 
provides a way to look at a set of VM2 generated conformers as well as their energy 
breakdowns: 
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Here an .sdf file for a ligand VM2 run has been read into Discovery Studio Visualizer 
 

 
 
 
 
2.2. Energy data 
 
.csv Comma separated values file containing calculated energy data 
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3. Back end workflow 
 
 
3.1. Generation of binding affinity tables 

 
 

3.2. Placeholder 
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VIII. Input file run options reference 
 
=============================================================== 
 

VeraChem Computational Chemistry Package Input Options. 
 
Sections are as follows: 
 
1. Choice of system type and calculation type and other top-level control. 
2. Molecular system definition options for protein macromolecules.  
3. Molecular system definition options for host molecules e.g. cyclodextrins. 
4. Molecular system definition options for ligand molecules. 
5. Math related options e.g. control of random seed generation. 
6. VeraChem mining minima (VM2) calculation options. 
7. General conformational search control options. 
8. Custom conformational search options. 
9. Options and control of spatial boundary based conformer rejection. 
10. Options for free energy processing of conformers. 
11. Stereochemistry checking and enforcement control. 
12. Control of filtering out conformer repeats. 
13. Options for molecular alignment and RMSD calculation. 
14. Geometry optimization options and control, including constraints. 
15. Molecular mechanics potential energy calculation: methods and usage control. 
16. Generalized Born (GB) solvation model control. 
17. Constant dielectric (CD) solvation model control. 
18. Distance dependent (DD) dielectric solvation model control. 
19. Poisson Boltzmann Surface Area (PBSA) solvation model control. 
 
 
=============================================================== 
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=============================================================== 
 
1. Choice of System Type and Calculation Type and Other Top Level Control.  
 
molSystemType 
 
 Choose the type of molecular system. There is no default; this option must be 
 given. See below for additional input required dependent on this choice. 
 
 ‘protein’  Protein receptor calculation (could include explicit water,  
    ions, etc.). Part of the system must be fixed in space (see  
    Section 2). 
 
 ‘host’   Host molecule calculation. These should be ‘small’   
    receptor systems of a few hundred atoms or less e.g.  
    cyclodextrins. 
 
 ‘ligand’   Ligand calculation; for example, a ‘drug like’ small   
    molecule. 
 
 ‘protein+ligand’ Protein-ligand complex. 
 
 ‘host+ligand’  Host-guest complex. 
 
calcnType 
 
 Choose type of calculation to be carried out. There is no default; this option must 
 be given. All calculation types can be initiated with one or multiple input 
 conformers. 
 
 ‘vm2’   VeraChem Second-generation mining minima (VM2)  
    free energy calculation.   
 
 ‘feprocess’  Free energy processing of one or multiple conformers  
    supplied by the user. 
 
 ‘confsearch’  Conformational search (potential energy only). 
 
 ‘rmsd’   Structural comparison of read-in conformers. 
 
 ‘filter’   Filter out repeats contained in read-in conformers. 
 
 ‘geomopt’  Geometry optimization. 
 

‘geomoptHatoms’ Optimize positions of just hydrogen atoms. Only allowed 
for molSystemType ‘protein’ and ‘protein+ligand’. 

 
 ‘energy+grad’  Single-point energy and gradient. 
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 ‘energy’  Single-point energy. 
 
 
timeLimit 
 

Time limit for calculations given in wall clock hours. Currently only relevant for 
calcnType ‘vm2’. The program terminates cleanly and outputs all data files when 
the limit is projected to be reached in the next phase of a calculation. The default 
is 96.0 hours.  

 
readInConfs 
 

Optionally read in molecular conformations (one or more) from a text file or 
multiple text files to initiate a calculation. The text file formats may be .xyz, .sdf, 
Macromodel .dat, or .crd. This option may be used, for example, to read in a 
previously generated ensemble of ligand conformations to generate initial protein-
ligand conformations, or simply to read in previously generated ensemble of 
protein-ligand conformations. If this option is not used a single starting 
conformation is taken from the input .crd coordinates – see Sections 2-4. 
 
The readInConfs option may be given up to a maximum of three times, providing 
multiple types of conformer ensembles. For each instance of readInConfs multiple 
conformer source files may be read in. The program automatically makes 
appropriate combinations of conformer types read-in. For example, if 
molSystemType  is ‘protein+ligand’ and if ‘complex’, ‘protein’, and ‘ligand’ 
conformer ensembles are read-in, the ‘complex’ conformers are taken as is and all 
unique combinations of the ‘protein’ and ‘ligand’ ensembles make additional 
‘protein+ligand’ start conformers. The maximum number of start conformations is 
1000. The program makes sensible truncations if the conformer files provided 
result in more. 

 
 ‘complex’  Formatted file(s) containing protein-ligand or host-guest  
    conformers. 
 
 ‘protein’  Formatted file(s) containing only protein conformers. 
 
 ‘host’   Formatted file(s) containing only host molecule   
    conformers. 
 
 ‘ligand’  Formatted file(s) containing only ligand conformers. 
 
 
ligandConfsToCrd  
 
 Only relevant when using the readInConfs option to read in ‘ligand’ conformers. 
 Controls how, if at all, read-in ligand conformers are superimposed on the ligand 
 input .crd coordinates. (Note that the input .crd coordinates themselves can be 
 moved prior to this by superimposition on template coordinates – see Section 4.) 



 91 

‘no’ Use the coordinates of the ligand conformers as read-in. 
This is the default. 

 
‘byConf1COG’ Translate the center of geometry (COG) of the first ligand 

conformer read-in to the COG of the ligand .crd. Apply the 
same translation to all subsequent ligand conformers read-
in. 

 
‘byConfsCOG’ Translate the COG of each ligand conformer read-in to the 

COG of the ligand .crd. 
 
‘byConf1All’ Carry out a rotation/translation superposition of all heavy 

atoms (non hydrogens) of the first ligand conformer read-in 
on the corresponding ligand .crd atom positions. Apply the 
same rotation/translation to all subsequent ligand 
conformers read-in. 

 
‘byConfsAll’ Carry out a rotation/translation superposition of all heavy 

atoms (non hydrogens) of the each ligand conformer read-
in on the corresponding ligand .crd atom positions. 

 
‘byConf1PairsMap’ Carry out a rotation/translation superposition of the first 

ligand conformer read-in with the ligand .crd coordinates 
using the atom indexes provided on the very next line. 
Apply the same rotation/translation to all subsequent ligand 
conformers read-in e.g. 

 
 byConf1PairsMap 
 3 5 18 21 22 23 
 
‘byConfPairsMap’ Carry out a rotation/translation superposition of each ligand 

conformer read-in with the ligand .crd coordinates using 
the atom indexes provided on the very next line e.g.  

 
 byConfsPairsMap 
 3 5 18 21 22 23 

 
useCrdAsTemplate  
 

Only relevant when using the readInConfs option to read in ‘complex’ conformers 
plus another type of conformer (e.g. ‘protein’, ‘host’, or ‘ligand’) and 
molSystemType is protein+ligand or host+ligand (i.e. a complex). Controls 
whether to use the .crd input coordinates (see Sections 2-4) as a template for 
generation of complex conformers (‘yes’) or whether to use the coordinates of the 
first ‘complex’ conformer read-in as a template (‘no’).  

 
 ‘yes’    
 
 ‘no’   This is the default.  
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useCrdAsConf  
 

Only relevant when using the readInConfs option. Controls whether to use the 
.crd input coordinates (see Sections 2-4) as a starting conformation in addition to 
the ones generated through readInConfs. Note that if readInConfs option is not 
used the .crd coordinates are always used to define a single starting conformation.  

 
 ‘yes’   This is the default. 
 
 ‘no’  
 
 
outputFormats 
 
 Choose any number of the following file formats. Currently .xyz and .pdb 
 formats are always output in addition to those chosen. Place one per line directly 
 following the keyword with no blank lines. 
 
 ‘sdf’   A structure-data file (SDfile) with standard V2000 or  
    V3000 molfile formatting. 
 
 ‘mol2’   Tripos mol2 file. 
 
 ‘dat’   Macromodel data file. 
 
 ‘csv’   Comma-separated-values file containing energy data. 
 
 ‘gms’   Basic template input files for the GAMESS electronic  
    structure software package. 
 
 ‘g09’   Basic template input files for the Gaussian09 software  
    package. 
 
fullEnergyBreakdown  
 
 Requests that for output of .sdf and .csv files a full breakdown of the energy into 
 constituent terms is written out. If ‘no’ is selected a limited number of constituent 
 energy terms are output.   
 
 ‘yes’   This is the default. 
 
 ‘no’ 
 
 
 
splitOutputFormats 
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Mostly relevant for molSystemType ‘protein+ligand’ and ‘host+ligand’. The 
same as outputFormats above, but a separate formatted file is output for each of 
the molecules comprising the complex. Currently .crd files are always output in 
addition to those chosen, even for non-complexes. The base-name for the split 
output files is taken from the input .crd file names; a descriptor is added based on 
the calculation type e.g. xxxxx.vm2.sdf, xxxxx.vm2_rank1.crd. Place one output 
format type per line directly following the keyword with no blank lines. 

 
 ‘sdf’   A structure-data file (SDfile) with standard V2000 or  
    V3000 molfile formatting. 
 
 ‘xyz’   Standard xyz file format. 
 
 
limitConfsToOutput 
 

The way that the number of conformers written to the formatted output files is 
limited can be chosen using this keyword.  

 
‘byCount’ The user sets the maximum number of conformers to be 

output. Follow this line directly with an integer. This is the 
default with a maximum number of conformers set as 
1000. 

 
‘byPopulation’ The user sets the maximum cumulative conformer 

population that limits the number of conformers output. 
Follow this line with a percentage value e.g. 99.9. Note that 
this option only makes sense for calcnType’s ‘vm2’ and 
‘feprocess’.  

 
atomsToOutput 
 
 This is relevant for systems that include proteins as not all the atoms are required 
 to be present in calculations, and not all atoms present are mobile.  
 
 ‘all’   All atoms are included in the formatted output. This is the  
    default. 
 
 ‘real’   Only ‘real’ atoms are included in the formatted output.  
    (Real atoms are those atoms that are included in the energy  
    calculation; however, they are not necessarily free to  
    move.) 
 
 
 ‘live’   Only live (flexible) atoms are included in the formatted  
    output. 
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binaryFileRestart 
 
 Restart a calculation from a VeraChem binary data file. The binary file has the 
 suffix .vcbin. The program expects the base name of the binary restart file to have 
 the same base name of the .inp file. 
 
 ‘crashed’  Use when calculation quits unexpectedly. This option is  
    currently only available for calcnType  ‘vm2’. 
 
            ‘extendRun’  Use for carrying out additional iterations of a calculation  
    that finished, but, for example, did not converge. This  
    option is currently only available for  calcnType  ‘vm2’. 
 
 ‘reprocess’  Uses the conformations produced from a prior run as a  
    starting point, but reprocesses them for energies, carrying  
    out a geometry optimizations as necessary, and proceeds  
    with the requested calculation. The user can  change the  
    energy potential (e.g. different solvation model) from the  
    original run if desired. This option is currently only   
    available for calcnType  ‘vm2’. 
 

‘textOutput’ Read a VeraChem binary data file and output the data as 
formatted text files (see outputFormats above.) This option 
is currently only available for calcnType  ‘vm2’. 

 
 
Example usage 1 
---------------------------------------------------------------- 
# 
molSystemType 
protein+ligand 
# 
calcnType 
vm2 
# 
timeLimit 
48.0 
# 
readInConfs 
ligand 
ligand_confs.xyz 
# 
outputFormats 
sdf 
csv 
# 
limitConfsToOutput 
byPopulation 
99.9 
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# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
2. Molecular System Definition Options for Protein Macromolecules  
 
Relevant for molsystemType ‘protein’ and ‘protein+ligand’. 
 
 
inputProtein Names of input files containing protein system data and 

real/live set definition related data. They are mandatory and 
must be given in order with no blank lines.     

 
 1    Signifies protein molecule one. A single protein  
     molecule is the current limit. 
 
 ~/path/protein_name.crd  Starting coordinates, atom names, residue names  
     etc. Files must conform to standard .crd format  
     (regular or extended). 
     

~/path/protein_name.top  Topology and molecular mechanics parameters. See 
Section XII for format specification. 

 
 ~/path/protein_name.mol Provides protein molecule bond orders and   
     stereocenter information. File must be standard  
     V2000 or V3000 mol format. 
 
setChainIds   If present controls relabeling of protein chain and residue  
    Ids given in the .crd file. Requires that the very next line  
    contain an integer, or integers, corresponding to the   
    count(s) of the last residue of each newly defined chain.  
    Optionally the next line can provide the new chain Ids. If  
    this second line is not present the defaults are A, B, C, …  
    and so on. E.g. 
 
     setChainIds 
    99 198 199 
    A B C       
 
constructLiveReal  Controls how the protein real/live set is defined i.e. the  
    protein atoms that are  included in the energy calculation  
    (real), and which atoms are also allowed to move in the  
    calculation (live). The live set is a subset of the real set.  
    This keyword is mandatory. 
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‘readIn’ Read in a formatted text file that defines the protein 
real/live set. See Section XII for format specification. The 
name of the file must be provided on the very next line e.g. 

 
 readIn 
 ~/path/protein_real_live.txt 

 
‘byTemplateCOGs’ Read in a template molecule’s atomic coordinates, from a 

.crd, .xyz, .sdf, .mol, .pdb, or Macromodel .dat formatted 
file, distances to this molecules center of geometry (COG) 
will define the protein real/live set. For example, use co-
crystalized ligand coordinates. The name of the file must be 
provided on the very next line e.g. 

 
 byTemplateCOG 
 ~/path/template_real_live.crd  

 
 

‘byTemplateAtoms’ Read in a template molecule’s atomic coordinates, from a 
.crd, .xyz, .sdf, .mol, .pdb, or Macromodel .dat formatted 
file, distances to which will define the protein real/live set. 
For example, use co-crystalized ligand coordinates. The 
name of the file must be provided on the very next line e.g. 

 
 byTemplateAtoms 
 ~/path/template_real_live.crd  
   

 
‘byXYZ’ Cartesian coordinates to be used as a reference point to 

define the protein real/live set. The coordinates must be 
provided on the very next line e.g. 

 
    byXYZ 
    3.2345  5.7941  9.7745 
 
The following are relevant for the constructLiveReal choices ‘byTemplateCOG’, 
byTemplateAtoms’, and ‘byXYZ’ 
 
realCutoffDist   The default is 9.0 Angstroms. This cutoff is residue based.  
    The distance is from any protein atom to any template  
    molecule atom for option ‘byTemplate’ or to a single user  
    defined point for option ‘byXYZ’. Any residue with an  
    atom within this distance is ‘real’ i.e. its atoms are included 
    in the energy calculation, but are not necessarily mobile. 
 
liveCutoffDist   The default is 7.0 Angstoms. This cutoff is atom based.  
    The distance is from any protein atom to any template  
    molecule atom for option ‘byTemplate’ or to a single user  
    defined for option ‘byXYZ’. Any atoms within this   
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    distance are ‘live’ i.e. mobile. They are subset of the ‘real’  
    set. 
 
symmetrizeRealSet  
 

If ‘yes’ multiple chains are present and are symmetric, based on exact matching of  
residue and atom names between chains, residues will be added to real set as 
 necessary to make it symmetric. 

 
‘yes’ 
 
‘no’ This is the default.  

 
symmetrizeLiveSet  
 

If multiple chains are present and are symmetric, based on exact matching of 
 residue and atom names between chains, atoms will be added to live set as 
 necessary to make it symmetric. 

 
‘yes’ 
 
‘no’ This is the default.  

 
 
 
Example usage 2 
---------------------------------------------------------------- 
# 
inputProtein 
1 
~/path/protein_name.crd  
~/path/protein_name.top 
~/path/protein_name.mol 
# 
constructLiveReal 
readIn 
~/path/protein_real_live.txt 
# 
---------------------------------------------------------------- 
 
 
Example usage 3 
---------------------------------------------------------------- 
# 
inputProtein 
1 
~/path/protein_name.crd  
~/path/protein_name.top 
~/path/protein_name.mol  



 98 

# 
constructLiveReal 
byTemplateAtoms 
~/path/template_real_live.crd 
# 
realCutoffDist 
8.0 
# 
liveCutoffDist 
6.0 
# 
---------------------------------------------------------------- 
 
=============================================================== 
 
3. Molecular System Definition Options for Host Molecules 
 
Relevant or molsystemType ‘host’ and ‘host+ligand’. 
 
inputHost   Names of input files containing host molecule data. They  
    are mandatory and must be given in order with no blank  
    lines. The program checks they are present by examination  
    of their suffixes. 
 
 1   Signifies that names of formatted data files for host   
    molecule 1 will follow. Currently, one ‘molecule’ is the  
    limit; however, a system comprising two hosts could still  
    be run by including the data for both host molecules in each 
    file. 
 
 ~/path/host_name.crd   Starting coordinates, atom names, etc. Files must  
     conform to standard .crd format (regular or   
     extended). 
 
 ~/path/host_name.top   Topology and molecular mechanics parameters. See 
     Section XII for format specification. 
 
 ~/path/host_name.mol  Provides host molecule bond orders and   
     stereocenter information. File must be standard  
     V2000 or V3000 mol format. 
 
Example usage 4 
---------------------------------------------------------------- 
# 
inputHost 
1 
~/path/host_name.crd  
~/path/host_name.top  
~/path/host_name.mol 
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# 
---------------------------------------------------------------- 
 
=============================================================== 
 
4. Molecular System Definition Options for Ligand Molecules  
 
Relevant or molsystemType ‘protein+ligand’ and ‘host+ligand’ and ‘ligand’. 
 
inputLigand   Names of input files containing host molecule data. They  
    are mandatory and must be given in order with no blank  
    lines. 
 
 1   Signifies that names of formatted data files for ligand  
    molecule 1 will follow. Currently, one ligand molecule is  
    the limit. 
 
 ~/path/ligand_name.crd  Starting coordinates, atom names, etc. Files  must 
     conform to standard .crd format (regular or   
     extended). 
 
 ~/path/ligand_name.top  Topology and molecular mechanics parameters. See 
     Section XII for format specification. 
 
 ~/path/ligand_name.mol Provides ligand molecule bond orders and   
     stereocenter information. File must be standard 
     V2000 or V3000 .mol format. 
 
 
placeLigandMethod Controls how, if at all, the ligand will be moved from the 

.crd starting coordinates given above before the start of a 
calculation by placement relative to a user supplied position 
in space or template set of coordinates. (Note: Calculation 
of center of geometry (COG) excludes hydrogen atoms, as 
does the least squares fit for superpositions.)  The moved 
ligand coordinates then redefine what the ‘input’ .crd 
coordinates are. 

 
‘none’ The ligand is not moved from the starting 

coordinates defined in .crd above. This is the 
default. 

  
‘byReceptorCOG’ Only relevant for molSystemType’s 

‘protein+ligand’ and ‘host+ligand’. The receptor’s 
(protein or host) center of geometry (COG) is used 
as a reference point that the ligand COG is 
translated to.   
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‘byXYZ’ Cartesian coordinates to be used as a reference point 
that the ligand center of geometry (COG) is 
translated to, and the very next line after that must 
contain the Cartesian coordinates, e.g. 

 
. byXYZ 
   3.2745  5.7654  9.7653 

 
‘byTemplateCOG’ Read in a template molecule, .crd, .xyz, .sdf, .mol, 

.pdb, or Macromodel .dat format, and use its center 
of geometry (COG) as a reference point that the 
ligand COG is translated to. For this option the very 
next line must contain the name of a formatted file 
containing the template e.g.  

 
 byTemplateCOG 
 ~/path/template_molecule.xyz 
 
‘byTemplateAll’ Read in a template molecule, .crd, .xyz, .sdf, .mol, 

.pdb, or Macromodel .dat format, and superimpose 
all heavy atoms of the template onto the ligand 
atoms. The template should be a conformer of the 
same ligand defined by the starting coordinate .crd 
file above, with atoms in the same order. For this 
option the very next line must contain the name of a 
formatted file containing the template e.g. 

 
 byTemplateAll 
 ~/path/template_conformer.sdf 

 
‘byTemplatePairsMap’ Read in a template molecule, .crd, .xyz, .sdf, .mol, 

.pdb, or Macromodel .dat format, and superimpose 
the ligand by chosen pairs of atoms to map onto 
each other. For this option the very next line must 
contain the name of a formatted file containing the 
template, the following line must contain the 
template atom indexes for use in superposition, and 
the subsequent line must contain the corresponding 
ligand atom indexes e.g. 

 
 byTemplatePairsMap 
 ~/path/template_molecule.crd 
 7  8    9  10  11  12  13 
 3  5  11  15  19  20  21 
 
  

doSnapTemplatePairs  If ‘yes’ a harmonic potential (see below) is applied to the  
    ligand atoms defined by the ‘byTemplatePairsMap’ setting  
    above, but at the position of the template atoms. This  
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    guides/snaps the chosen ligand atoms to the template  
    positions during conformational searches/geometry   
    optimizations. Only relvent when placeLigandMethod  
    option ‘byTemplatePairsMap’ is used. 
 

‘yes’ 
 
‘no’ This is the default.  

 
 
snapTemplatePairsFC  Relevant when doSnapTemplatePairs is ‘yes’. Sets the  
    harmonic potential force constant. The default value is 2.0  
    Kcal/mol/Angs. 
 
 
Example usage 5 
---------------------------------------------------------------- 
# 
inputLigand 
1 
~/path/ligand_name.crd  
~/path/ligand_name.top  
~/path/ligand_name.mol 
# 
placeLigandMethod 
byTemplateCOG 
~/path/template_molecule.xyz 
# 
---------------------------------------------------------------- 
 
=============================================================== 
 
5. Math Related Options. 
 
randomSeedsMethod 
 

Choose method to generate seeds for the KISS random number generator. 
Random number generation is required for various stochastic algorithms in the 
VeraChem computational chemistry package. 
 
‘byWallClock’ Uses wall clock timing data combined with process ID data 

to automatically generate a different set of seeds every run. 
Note that for parallel runs a different seeds are produced for 
each process, but only the master process’s set is written to 
output files. This is the default. 

 
‘byUser’ The seeds are supplied by the user (see below). This option 

must be used if deterministic parallel processor runs are 
required.    
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setRandomSeeds    
 

For ‘byUser’ option above include this keyword and supply four integers in the
 following four lines. 

 
 
Example usage 6 
---------------------------------------------------------------- 
# 
randomSeedsMethod 
byUser 
# 
setRandomSeeds 
9759 
9850 
7072 
203 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
6. VeraChem Mining Minima VM2 Calculation Options. 
 
Relevant for calcnType ‘vm2’. 
 
convTolVm2 
 
 Specifies the free energy difference between VM2 iterations that signifies 
 convergence. At least 3 iterations must have been carried out and the free energy 
 must have gone down compared to the last 2 iterations. The default is 0.01 
 Kcal/mol. 
 
maxVm2Iters    
 
 Specifies the maximum number of VM2 iterations to be carried out before 
 quitting whether converged or not. The default is 60. 
 
 

  
 
Example usage 7 
---------------------------------------------------------------- 
# 
convTolVm2 
0.001 
# 
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maxVm2Iters 
30 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
7. General Conformational Search Control Options. 
 
Relevant for calcnType ‘vm2’ and ‘confsearch’.  
 
The VeraChem conformational search capability comprises various vibrational mode-
distort-minimize types as well as rigid body translation-rotation distort-minimize 
algorithms. The ‘canned’ search styles use various combinations of these algorithms 
suitable for specific chemical system-based search demands. For fine control of these 
algorithms a ‘custom’ search may be requested (see Section 9). 
 
 
Iteration and convergence control: only relevant for calcnType option ‘confsearch’. 
 
convTolConfsearch 
 

Specifies the potential energy difference between confsearch iterations that 
signifies convergence. At least 3 iterations must have been carried out and the 
potential energy must have gone down compared to the last 2 iterations. The 
default is 0.01 Kcal/mol. 

 
maxConfsearchIters    
 
 Specifies the maximum number of confsearch iterations to be carried out before 
 quitting whether converged or not. The default is 60. 
 
 
Search methods control: relevant for calcnType options ‘vm2’ and ‘confsearch’. 
 
confSearchStyle 
 

Specifies the style of conformational search to be carried out. Note: See Section 9 
for default ligand box constraint settings associated with confSearchStyle settings. 

 
‘standard’ Requests the standard single-mode based sampling of 

conformational space. The quickest ‘canned’ search style, 
but will not consistently find the lowest energy conformers 
of a system, so use with caution. 

 
‘enhanced’ Requests an enhanced sampling of conformational space. In 

addition to the single-mode based sampling, search drivers 
built from random combinations of pairs of single modes 
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are used. Usually appropriate when the approximate 
pose/position of the ligand is known – for example by 
superposition on a ligand with the same scaffold that was 
co-crystallized with the receptor. This is the default. 

 
‘rigorous’ Requests a rigorous sampling of conformational space. 

Useful when the active/binding site is known, but the 
receptor and/or ligand itself may be quite flexible with 
large R groups etc. As well as single-mode and random-
pair-modes searches, it includes searches using focused 
drivers where fewer torsions are included in each driver, 
but distortions tend to be more pronounced. 

 
 ‘vrigorous’  Requests a very rigorous sampling of conformational space. 
    Useful when the active/binding site is known, but nothing  
    is known about the pose and position of the ligand in the  
    active/binding site. Large translations and rotations are  
    included in the search as well as mode distortions. 
 

‘confgen1’ This setting is designed solely to generate a diverse set of 
conformations for starting points in other calculations. It 
carries out only one vm2/confsearch iteration and uses 
stricter than default filtering and expanded energy cutoff to 
achieve diversity of structures as opposed to energy 
convergence. 

 
‘confgen2’ Relevant for molSystemType ‘ligand’ only. The same 

process as ‘congen1’ above, but in addition the resulting 
conformers are rotated about their 3 principal axes 180 
degrees. The 4-fold expanded set of conformers then have 
some orientational as well conformational diversity. 

 
‘confgen3’ Placeholder – ongoing implementation. 
 
‘confgen4’ Relevant for molSystemType ‘ligand’ only. The same 

process as ‘congen1’ above, but in addition a maximum of 
20 of the resulting conformers are randomly rotated about 
their 3 principal axes between 0 and 360 degrees to 
generate 1000 final conformations. This provides large 
orientational diversity. For use when no information on the 
ligand pose is known. 

 
 ‘custom’  All search methods and parameters can be finely controlled 
    according to the user’s choice. Combinations of the many  
    available conformational search options can be employed.  
    Recommended for expert users who want detailed control  
    of the search procedures.  See custom search control  
    parameters in Section 8 below. 
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confGenLengthSort 
 Only relevant for molSystemType ‘ligand’ calculations with confSearchStyle 
 ‘confgen1’, ‘confgen2’, and ‘confgen3’. If ‘yes’ ligand conformers are sorted 
 according to their length (longest first) before any rotomers are generated and 
 conformers output. 
 
 ‘yes’   This is the default. 
 
 ‘no’    
 
maxSearches    
 

The maximum number of searches for each mode-distort-minimize search type 
strung together to form the search style. The default is 400. This may be 
automatically adjusted downwards for small systems. It may also be automatically 
adjusted for MPI parallel runs for load balancing. 

 
modeRotnMax   
 
 The maximum rotation angle for a mode distortion.  
 The default is 180.0 (degrees). 
 
switchToRandomRotnMax 
 
 The ‘vm2’ or ‘confsearch’ iteration at which the maximum rotation angle for  
 mode distortions is randomly chosen from the range modeRotnMax/2 to  
 modeRotnMax. The default is 7. 
 
numRlsearch    
 
 The number of random ligand fixed-body translation-rotation searches to be 
 carried out. Only relevant when a ‘vrigorous’ search style is requested or when a 
 random ligand rotation/translation search is requested through the custom search 
 option. The default is 24. 
 
ligandTranMax   
 
 The maximum ligand fixed-body translation distortion length.  
 The default is 2.0 (Angstroms). 
 
ligandRotnMax   
 
 The maximum angle for ligand fixed-body rotation distortions.  
 The default is 180.0 (degrees). 
 
excludeBackBone 
 

Only relevant for systemType ‘protein’ and ‘protein+ligand’. If ‘yes’ the protein 
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backbone atoms are excluded from drivers for conformational searches; if ‘no’ the 
protein backbone atoms are included in mode-distort conformational searching. 
Note that regardless, live (mobile) backbone atoms are always included in 
geometry optimizations after mode distortions. 

 
 ‘yes’   This is the default. 
 
 ‘no’ 
 
excludeSideChains 
 

Only relevant for systemType ‘protein’ and ‘protein+ligand’. If ‘yes’ the protein 
sidechain atoms are excluded from drivers for conformational searches; if ‘no’ the 
protein sidechain atoms are included in mode-distort conformational searching. 
Note that regardless, live (mobile) sidechain atoms are always included in 
geometry optimizations after mode distortions. 

 
 ‘yes’ 
 
 ‘no’   This is the default. 
 
excludedAtomsFile 
 

Optionally specify a text file that provides a list of atoms to be excluded from 
drivers for conformational searches. See Section XII for format. 
 
~/path/file_name_excluded_atoms.txt 

 
forceConstCutoff 
 

Mode drivers with force constants larger than this cutoff are excluded from the 
mode search. The default is 5000.0. 

 
deltaLevel1Cutoff 
 

Relevant when there is a level 2 correction to the level 1 energy e.g. single –point 
energy with PBSA solvation model at geometry determined with GB solvation 
model. For level 1 energy differences between the lowest energy conformer and 
the conformer just found that are greater than this cutoff, the level 2 energy 
correction is skipped and the current conformer discarded. The default is 20.0 
Kcal/mol. 

 
nonBlockingUpdate 
 

This keyword is only relevant for MPI multi-processor runs. If ‘yes’, non-
blocking sends and receives are used to communicate low energy structures 
between MPI processes every ‘vm2’ or ‘confsearch’ iteration; if ‘no’, blocking 
collective operations are used, which can result in large latencies.   
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‘yes’ This is the default for systemType ‘protein’, ‘protein+ligand’, 
‘host’, and ‘host+ligand’. 

 
 ‘no’  This is the default for systemType ‘ligand’. 
 
doLoadBalance 
 

This keyword is only relevant for MPI multi-processor runs. If ‘yes’, the MPI 
process that finishes its assignment of searches first in each ‘vm2’ or ‘confsearch’ 
iteration signals all other processes to proceed when their current mode distort-
minimize is complete. This results in some skipped searches, but improves load 
balancing considerably. 

 
‘yes’ This is the default for systemType ‘protein’, ‘protein+ligand’, 

‘host’, and ‘host+ligand’. 
 
 
 ‘no’  This is the default for systemType ‘ligand’. 
 
mixSearchBasis 
 

This keyword and the following four related ones are only relevant for MPI multi-
processor runs. Periodically, multiple conformers are used as a basis for 
independent (i.e. decoupled) conformational searching, with no communication 
between MPI processes. This adds diversity to the conformational search. The 
number of conformer starting structures equals the number of MPI processes. (see 
mixSearchPicks below).  

 
 Integer 0, 1 to 4 0  sets this option as off 
 

1  Use multiple conformers every call to the 
conformational search i.e. every vm2 or confsearch 
iteration. 

 
2  Use multiple conformers every second 

vm2/confsearch iteration. This is the default. 
 

3 Use multiple conformers every third 
vm2/confsearch iteration. 

 
4 Use multiple conformers every fourth 

vm2/confsearch iteration. 
 
mixSearchIters 
 

Relevant if concurrent conformer searching is on (i.e. if mixSearchBasis above is 
not 0). Sets the vm2/confsearch iteration above which concurrent searching is 
completely switched off. The default is 20. 
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mixSearchPicks 
 
 Controls how the group of conformers is selected for the ‘mixSearchBasis’ 
 approach. 
 
 ‘inorder’  Select N conformers in order of their free energy as the set  
    of conformers to search on, where N is the number of MPI  
    processes. 
 
 ‘random1’  Select the first N/2 conformers in order, then pick an  
    additional N/2 at random from all the remaining   
    conformers. 
 
 ‘random2’  Select the first N/2 conformers in order, then pick an  
    additional N/2 at random from the next poolSize – N/2  
    conformers in order of their free energy. See below for  
    poolSize. This is the default. 
 
 ‘cluster’  Select the first N/2 conformers in order, then cluster the  
    remaining conformers starting at N/2 + 1 with an RMSD  
    cutoff of 0.5 Angstroms. Pick the lowest energy conformer  
    of each cluster up to N MPI processes. If not enough  
    clusters present select from the lowest energy conformer up 
    again (to double search the low energy conformers). 
 
doClusterBy 
 

Controls whether clustering (mixSearchPicks ‘cluster’ option) is based on 
RMSDs of the whole molecule system or a component. For example, for a 
protein+ligand complex the clustering can be set as based solely on the ligand 
RMSDs. 
 
‘complex’ The default if  molSystemType is ‘protein+ligand’ or 

‘host+ligand’. 
 
‘receptor’ The only option if molSystemType is ‘protein’ or ‘host’. 

Can also be selected for ‘protein+ligand’ or ‘host+ligand’ 
runs. 

 
‘ligand’ The only option if molSystemType is ‘ligand’. Can also be 

selected for ‘protein+ligand’ or ‘host+ligand’ runs. 
 
poolSize 
 

For mixSearchPicks option ‘random2’ option, sets the size of the pool of 
conformers that are picked from at random. The default is 64. For the first 
iteration of a VM2 run when starting conformers are read in (see Section 1.) the 
default is quadrupled to allow a more diverse search basis. For ‘random1’ and 
‘cluster’ options it is hardwired as all available conformers; for option ‘inorder’ it 
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is hardwired as the number of MPI processes. 
 
relaxNonDriverAtoms 
 
 If ‘yes’, when carrying out distortions along drivers, non-driver atoms are allowed 
  to relax after each distortion step via a few geometry optimization cycles (driver  
 atoms are kept fixed during these cycles). If ‘no’ is selected all non-driver atoms  
 are kept fixed in space during distortions. Note that enforcing rigidity during  
 driver distortions will speed up the search, but will invariably result in extremely   
 high energies for small driver distortions limiting the conformational space   
 sampled. 
 
 ‘yes’   This is the default. 
 
 ‘no’ 
 
 
Example usage 8 
---------------------------------------------------------------- 
# 
confSearchStyle 
vrigorous 
# 
maxSearches 
200 
# 
numRlsearch 
48 
# 
excludedAtomsFile 
~/path/file_name_excluded_atoms.txt 
# 
mixSearchBasis 
2 
# 
mixSearchPicks 
random2 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
8. Custom Conformational Search Options. 
 
Relevant for calcnType ‘vm2’ and ‘confsearch’.  
 
Use these options when keyword confSearchStyle is set to ‘custom’. 
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Search 
   
 Choose the type of search to be carried out. 
               
 ‘mode’  Initiates a search using distortions along mode based drivers 

followed by geometry optimization. The nature of the mode-based 
search can be further controlled by the options below. This is the 
default. 

                                                 
 ‘ligand’ Initiates a ligand based search where the ligand is translated, 

and/or rotated followed by a geometry optimzation of the system. 
The ligand based search can be further controlled by the options 
described below.  

                                                 
 ‘combined1’ Requests a mode based search followed immediately by a  
   ligand based search. 
               
 ‘combined2’ Requests a ligand based search followed immediately by a mode 

based search. 
 
modeSearch 
   
 Choose the type of mode search to be carried out. 
               
 ‘normal’ A standard mode search with distortions along drivers weighted 

according to mode coefficients. This is the default.                                                
                                                 
 ‘focused’ A more robust mode search with more focused and larger 

distortions. This style of mode search cannot be applied to ligand 
only systems. 

               
 ‘combined1’ Requests a standard mode search directly followed by a robust 

mode search i.e. ‘normal’ then ‘focused’. 
                             
 ‘combined2’ Requests a robust mode search directly followed by a standard 

mode search i.e. ‘focused’ then ‘normal’.                                                                                     
                             
mode 
   

For a ‘normal’ search (see above), choose how to determine geometry 
displacements i.e. drivers. 

               
 ‘single’ Use individual modes only. This is the default. 
               
 ‘pair’  Use a linear combination of randomly chosen pairs of modes 

(generated on the fly). 
               

‘combined1’ Carry out a ‘single’ mode search directly followed by a ‘pair’ 
mode search. 
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 ‘combined2’ Carry out a ‘pair' mode search directly followed by a 'single' mode 

search.                            
  
focusedSearch 
   
 For a ‘focused’ search (see above), choose ligand driven, receptor driven, or a           
 combination of the two. 
 
 ‘ligand’       Ligand driven focused search only. All receptor atom and any 

small ligand mode coefficients are zeroed out. Distortions are then 
focused on small groups of ligand atoms. 

               
 ‘receptor’     Receptor driven focused search only. All ligand atom and any 

small receptor mode coefficients are zeroed out. Distortions are 
then focused on small groups of receptor atoms. 

               
 ‘combined1’    Carry out a ‘ligand’ driven focused search directly followed by 
                             a ‘receptor’ driven focused search. This is the default. 
                             
 ‘combined2’    Carry out a ‘receptor’ driven focused search directly followed   
   by a ‘ligand’ driven focused search. 
 
 
ndrivers N Number of drivers N to select from the total available (only           

applicable to ‘single’ mode generated drivers). 
   
  -1 Select all available drivers i.e. N is set equal the total number of 

drivers generated.  This the default.                        
   
drivers 
   
 Determines how the drivers are chosen or ordered. 
               
 ‘largest’ Pick N drivers in order of the largest number of coefficients > |0.1|. 

This is the default. 
               
 ‘random’ Randomly pick N drivers. 
               
 ‘bottom’ Pick the N drivers with the smallest eigenvalues.  
               
 ‘middle’ Pick N drivers from the middle range of eigenvalues. 
               
 ‘top’  Pick the N drivers with the largest eigenvectors. 
               
 
binRandomPairs 
 
 For searches with random pairs of modes if ‘yes’ the possible pair combination  
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 are binned and the algorithm will pick equally from all the bins; if ‘no’ totally   
 random pair combinations are used. 
 
 ‘yes’  This is the default for host involved systems and ligand only 
   systems. 
 
 ‘no’  This is the default for protein involved systems. 
 
modeDistMaxE 
 

Specify the energy change cutoff for mode distortions. The default is 2000.0 
(kcal/mol). 

    
ligandSearch 
   
 Choose the type of ligand search to be carried out. 
               
 ‘systematic’ Requests a systematic ligand search. Rotations of +/-    
   ligandRotnMax/4, ligandRotnMax/2, and ligandRotnMax degrees   
   (see ligandRotnMax, Section 7) and translations of +/-     
   ligandTranMax/4, ligandTranMax/2, and ligandTranMax    
   Angstoms (see ligandTranMax, Section 7) of the ligand about and    
   along its principal axes are carried out in small steps. Between   
   each step a few geometry relaxation steps are carried out for the   
   receptor. Combined translation-rotations are also carried out giving 
   a total of 80 searches per dimension searched. The number of   
   dimensions searched is controlled by sligandSearch (see below).   
   The preceding distances and angles are limits, and the rotation or   
   translation is stopped at any step that results in an energy change   
   greater than ligandDistMaxE (see below). After stopping each   
   rotation or translation, a full geometry optimization is carried out.                                                
                                                 
 ‘random’ Requests a search involving random translations and rotations of   
   the ligand along and about its principal axes. Rotation limits are   
   +/- ligandRotnMax and translation limits are +/- ligandTranMax.   
   The number of dimensions searched is controlled by rligandSearch 
   (see below). Again, distortions are stopped if an energy change   
   greater than ligandDistMaxE occurs. A geometry optimization is   
   carried out after each distortion. The number of searches is    
   controlled by numRlsearch (see Section 7 above). 
               
 ‘combined1’ Requests a systematic ligand search directly followed by a random 

ligand search. 
                             
 ‘combined2’ Requests a random ligand search directly followed by a systematic 

ligand search.   
               
sligandSearch 
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 Number of dimensions in which to carry the systematic ligand search. 
                
 ‘1d’  Rotation about the principal axis with the smallest principal 

moment of inertia, followed by full geometry optimization. Then 
translation along the same axis again followed by geometry 
optimization. Then translation-rotation along the same axis 
followed by geometry optimization. This is the default. 

 
 ‘2d’  Carry out '1d' rotations as above, then do the same for the axis with 

the second largest principal moment of inertia. Then move onto the 
translations, then onto translation-rotations. 

 
 ‘3d’  All principal axes are tried in the same manner as above. 
               
rligandSearch 
 
 Number of dimensions in which to carry the random ligand search plus control of   
 the procedure. 
 
 ‘1d’  Random translations and rotations along and about the principal 

axis with the smallest principal moment of inertia, followed by full 
geometry optimization. This is the default. 

 
 ‘2d’  Carry out ‘1d’ as above, then do the same for the axis with the 

second largest principal moment of inertia i.e. separate geometry 
optimization for each axis trans/rots. 

 
 ‘3d’  All principal axes are tried in the same manner as above. 
 
 ‘comb2d’ Combines the random translations and rotations along and about 

two principal axes before the geometry relaxation step. 
 
 ‘comb3d’ Combines the random translations and rotations along all principal 

axes before the geometry relaxation step.                            
 
ligandDistMaxE 
 

Specify the energy change cutoff for ligand rotation/translation distortions. The 
default is 10000.0 (kcal/mol). 

 
 
Example usage 9 
Custom search settings that reproduce the confSearchStyle setting ‘vrigorous’ described 
above in Section 7. 
---------------------------------------------------------------- 
# 
Search 
combined1 
# 
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modeSearch 
combined1 
# 
mode 
combined1 
# 
sdriver 
1  
# 
ndrivers 
-1  
# 
drivers 
bottom 
# 
modeDistMaxE 
2000.0  
# 
ligandSearch 
combined1 
# 
sligandSearch 
3d 
# 
rligandSearch 
comb3d 
# 
ligandDistMaxE 
10000.0 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
9. Options and Control of Spatial Boundary Based Conformer Rejection. 
 
Relevant for calcnType ‘vm2’ and ‘confsearch’. 
 
These options allow conformers that do not fit the users predetermined geometric criteria 
to be discarded during a conformational search. They allow, for example, protein-ligand 
conformations where the ligand may have left the region of the known binding pocket to 
be discarded, or for conformers in which explicit water molecules that move too far away 
from a known crystallographic position to be discarded. These region-based exclusions 
can be used in conjunction with or be replaced by energy-based constraints applied 
during geometry optimizations (see Section 14). 
 
boxedAtoms  
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 integer1 integer2 integer3 …. 
 

An integer or list of integers that specifies an atom or atoms (other than ligand 
atoms) to apply a spherical boundary to; for example, an explicit water molecule 
oxygen atom. The center of geometry of the atoms in the list is only allowed to 
move in a sphere of specified dimension (see below), if it moves outside the 
sphere the conformation is rejected. Atoms on the list are also fixed in space 
during mode distortions. The reference center is defined by the input .crd 
coordinates of specified atoms. This option may be given up to twenty times i.e. 
the spherical box ‘constraint’ may be applied to twenty separate groups of atoms. 
Each spherical box may apply to a maximum of 200 atoms. 
 

atomBoxSize 
 
 Specify the radius of the sphere that the ‘boxedAtoms’ center of coordinates must   
 remain in. The default is 1.0 (Angstroms). If the ‘boxedAtoms’ center of   
 coordinates moves outside this sphere the conformation is rejected.   
 
ligandBoxSize 
                  

Specify the radius of the sphere in Angstroms that the ligand center of coordinates 
must remain in. If the ligand center of coordinates moves outside this spherical 
box the conformer is rejected. The reference center is defined by the input .crd 
coordinates of the ligand. To turn this filter off set as -1.0. The default is -1.0 
(off) for molSystemType ‘host+ligand’. For all other molSystemTypes, the 
default radius depends on the confSearchStyle: for ‘custom’, ‘standard’, and 
‘enhanced’ it is 1.0 Angstroms; for ‘rigorous’ it is 2.0 Angstroms; for ‘vrigorous’ 
it is 4.0 Angstroms. 

 
 
Example usage 10 
---------------------------------------------------------------- 
# 
boxedAtoms 
32 35 
# 
atomBoxSize 
2.0 
# 
ligandBoxSize 
2.0 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
10. Options for Free Energy Processing of Conformers. 
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Relevant for calcnType ‘vm2’ and ‘feprocess’. 
 
modeScanning   Allows the mode scanning step in the calculation of the  
    configuration integral to be turned on or off.  
 
 ‘on’   This is the default. 
 
 ‘off’ 
 
 
temperature   Temperature in Kelvin used in the calculation of   
    configurational integrals. The default is 300.00. 
 
freeEnergyPreFactor  

 
Control which atoms are used in the calculation of the free energy prefactor. Only 
relevant for protein involved calculations. 

 
 ‘useLiveAtoms’ Use only the ‘live’ atoms.  
 
 ‘useRealAtoms’ Use all ‘real’ atoms. This is the default. 
 
 
Example usage 11 
---------------------------------------------------------------- 
# 
modeScanning 
off 
# 
temperature 
273.15 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
11. Stereochemistry Checking and Enforcement Control. 
 
Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, and ‘geomopt’. 
 
 
maintainCisTrans 
 

If ‘yes’ cis/trans arrangements across double bonds are enforced by rejecting 
conformers where isomerization has occurred; if set as ‘no’ cis/trans 
isomerization is allowed. Double bonds are as identified by the bond orders given 
in the input mol/sdf file; Cis/trans arrangements across double bonds are 
identified automatically. 
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 ‘yes’   This is the default. 
 
 ‘no’ 
 
 
maintainParity 
 

If ‘yes’ R/S stereocenters are enforced by rejecting conformers where 
stereoisomerization has occurred. If set as ‘no’ stereoisomerization is allowed. 
R/S stereocenters are as defined in the input mol/sdf file. 

 
 ‘yes’   This is the default. 
 
 ‘no’ 
 
 
maintainProteinPepBonds 
 

Control the stereochemistry of protein peptide bonds by rejecting generated 
conformers that violate the chosen option. 

 
‘asInput’ The stereochemistry of protein peptide bonds are 

maintained as they are in the user provided input structure. 
This is the default. 

 
‘asTrans’ An attempt will be made to flip any cis protein peptide 

bonds found in the input structure and all peptide bonds 
will then be maintained as trans. This option is not yet 
functional. 

 
 ‘no’   Protein peptide bond isomerization is allowed. 
 
 
 
Example usage 12 
---------------------------------------------------------------- 
# 
maintainCisTrans 
yes 
# 
MaintainParity 
yes 
# 
MaintainProteinPepBonds 
asInput 
# 
---------------------------------------------------------------- 
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=============================================================== 
 
12. Control of Filtering Out Conformer Repeats. 
 
Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, ‘rmsd’, and ‘filter’. 
 
These parameters set energy difference cutoffs and geometry RMSD cutoffs that control 
how similar two conformers have to be for one of them to be designated a repeat and 
discarded. Additionally, energy parameters that control the culling of ‘high energy’ 
conformers can be set.  
 
preFilterCalcnType 
 

Choose type of calculation to be carried out prior to filtering. Only relevant for 
calcnType ‘filter’. 

 
‘geomopt’ Geometry optimization. This is the default. 

 
 ‘energy+grad’  Single-point energy and gradient. 
 
 ‘energy’  Single-point energy. 
 
 ‘none’   No calculation before filtering. 
 
 
pairCutoff1 Used in the filtering conformers either read in or resulting 

from a conformational search that have not undergone free 
energy processing. It is the bonded-term-energy difference 
below which a pair of conformers will be geometrically 
compared. The default for calcnType ‘vm2’ is 0.5 
Kcal/mol; for calcnType’s ‘filter’, ‘rmsd’, ‘confsearch’, the 
default is 2.0 Kcal/mol.   

 
pairCutoff2 Used in the filtering conformers either read in or resulting 

from a  conformational search that have undergone free 
energy processing (relevant for calcnType’s ‘vm2’ and 
‘feprocess’). It is the bonded-term-energy difference below 
which a pair of conformers will be geometrically 
compared. The default is 1.0 Kcal/mol.  

 
pairRmsdCutoff1 Used in the filtering conformers either read in or resulting 

from a  conformational search that have not undergone free 
energy processing. It is the geometric RMSD lower than 
which the conformer with the higher potential energy is 
discarded. The default for calcnType ‘vm2’ is 0.2 
Angstroms; for calcnType’s ‘filter’, ‘rmsd’, and 
‘confsearch’ the default is 0.3 Angstroms. 
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pairRmsdCutoff2  Used in the filtering conformers either read in or resulting  
    from a  conformational search that have undergone free  
    energy  processing. It is the geometric RMSD lower than  
    which the conformer with the higher free energy is   
    discarded. The default is 0.3 Angstroms. 
 
firstConfCullE Energy cutoff used for initial culls e.g. the first 2 VM2 

iterations. Depending on the calculation type and status, it 
is the conformer potential energy or free energy relative to 
the current lowest energy conformer at which all higher 
energy conformers are discarded. The default is 20.0 
Kcal/mol except for calcnType’s ‘filter’ and ‘rmsd’ when 
the default is 100.0 Kcal/mol. 

 
ConfCullE Standard energy cutoff used for culling high energy 

conformers. Depending on the calculation type and status, 
it is the conformer potential energy or free energy relative 
to the current lowest energy conformer at which all higher 
energy conformers are discarded. The default is 10.0 
Kcal/mol except for calcnType’s ‘filter’ and ‘rmsd’ when 
the default is 100.0 Kcal/mol. 

 
displaceCurrentConfs 
 

Only relevant for the molSystemType’s ‘protein’ and ‘protein+ligand’. If ‘yes’ 
during the filtering process a newly generated conformer found to be a repeat of a 
currently established conformer, which also has a lower energy (this energy 
difference will always be very small i.e. a fraction of a kcal/mol) will displace the 
currently established conformer. In some cases with this will lead to very small 
energy fluctuations between iterations and therefore very slow convergence, 
therefore the default is set as ‘no’. 

 
 ‘yes’  
 
 ‘no’   This is the default. 
 
 
 
 
Example usage 13 
---------------------------------------------------------------- 
# 
pairCutoff1 
0.2 
# 
pairCutoff2 
0.3 
# 
firstConfCullE 
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30.0 
# 
ConfCullE 
20.0 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
13. Options for Molecular Alignment and RMSD Calculation. 
 
Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, ‘rmsd’, ‘filter’, and ‘geomopt’. 
For calcnType ‘rmsd’ a set of conformers must be read-in via the readInConfs keyword - 
see Section 1. 
 
Currently alignment options are only relevant for molsystemType ‘ligand’, ‘host’, and 
‘host+ligand’. For molsystemType ‘protein’ and ‘protein+ligand’ no alignment will be 
carried out regardless of user input as protein real-fixed atoms are already exactly aligned 
and provide the reference position and orientation for the whole system. 
 
The alignment options allow the conformations produced during the course of a particular 
calculation to be superimposed on the input conformation for output. The default for the 
molsystemType’s listed above is for alignment to be turned on. Unless the user wants to 
specify the specific atoms to align, e.g. when there is a suitable ligand scaffold, the 
defaults picked by the program are usually appropriate. 
 
 
preRmsdCalcnType 
 

Choose type of calculation to be carried out prior to RMSD calculation. Only 
relevant for calcnType ‘rmsd’. 

 
‘geomopt’ Geometry optimization. This is the default. 

 
 ‘energy+grad’  Single-point energy and gradient. 
 
 ‘energy’  Single-point energy. 
 
 ‘none’   No calculation before filtering. 
 
 
preRmsdFilter 
 

If ‘yes’ filter the read-in conformers before calculation of RMSD. Only relevant 
for calcnType ‘rmsd’. 

 
 ‘yes’    
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 ‘no’   This is the default. 
 
 
rmsdAllPairsMethod 
 

Choose symmetry aware method to calculate and output the RMSD between all 
pairs of conformers that remain after any filtering. Only relevant for calcnType 
‘rmsd’. 

 
‘symaware1’ Basic fast symmetry aware algorithm. This is the default. 

 
‘symaware2’ More sophisticated and expensive symmetry aware 

algorithm – see J. Chem. Inf. Comput. Sci. 44, 1301-1313 
(2004). Not available for molSystem ‘protein’ and 
‘protein+ligand’ 

 
‘none’ Only RMSDs between the Rank 1 conformer and the rest 

are calculated using the basic symmetry aware method. 
 
confAlignment 
 
 ‘none’   Turn alignment off. 
 
 ‘receptor’  The default for molsystemType ‘host’ and    
    ‘host+ligand’ runs. 
 
 ‘ligand’  The default for molsystemType ‘ligand’ runs. 
 
 ‘selectatoms’  Indicates that the user will provide specific atoms to  
    use for alignment. 
 
numAlignAtoms  Number of atoms the user will provide for    
    alignment. 
 N      
 
atomsToAlign   Integers identifying which atoms to align. 
 
 integer1 integer2 integer3 interger4 … 
 
 
Example usage 14 
---------------------------------------------------------------- 
# 
confAlignment 
selectatoms 
# 
numAlignAtoms 
11 
# 
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atomsToAlign 
10 16 21 18 20 12 19 17 15 7 24 
# 
---------------------------------------------------------------- 
 
 
=============================================================== 
 
14. Geometry Optimization Options and Control, Including Constraints. 
 
Relevant for calcnType ‘vm2’, ‘confsearch’, ‘feprocess’, and ‘geomopt’. 
 
The following control convergence criteria, geometry optimization methods, and 
maximum allowed geometry steps to achieve convergence. 
 
maxAtomGrad  Standard convergence criterion. Used, for example, for  
    calcnType ‘geomopt’ or ‘feprocess’ runs or for final  
    geometries after mode distortion. It is the maximum  
    absolute value gradient allowed of any individual mobile  
    atom in the system. A second criterion is that the whole  
    mobile system gradient RMSD must also be less than 1/3 of 
    this parameter. The default is 0.001 (Kcal/mol)/Angstrom. 
 
maxAtomGradLoose  Loose convergence criterion. Used, for example, for an  
    initial geometry optimization after a mode distortion. It is  
    the maximum absolute value gradient allowed of any  
    individual mobile atom in the system. As above, the whole  
    mobile system gradient RMSD must also be less than 1/3 of 
    this parameter. The default is 0.01 (Kcal/mol)/Angstrom. 
 
doPreoptSteps   Do some initial geometry steps before a first full geometry  
    optimization is attempted. During pre-optimizations steps  
    any atom gradients above 100.0 Kcal/mol/Angstrom or  
    below -100.0 Kcal/mol/Angstrom are set to +/- 100.0  
    Kcal/mol/Angstrom are damped. This is useful for initial  
    starting structures where there may be close contacts.  
 
 ‘yes’   Turn this option on. This is the default. 
 
 ‘no’   Turn this option off. 
 
preoptMethod   Method to use for the pre-optimization geometry steps. 
 
 ‘1’   Quasi-Newton geometry optimization algorithm. 
 
 ‘2’   Conjugate-gradient geometry optimization algorithm. This  
    is the default. 
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maxPreoptSteps  Maximum number of pre-optimization geometry steps. The 
    default is 100. 
 
 
geomoptMethod  Method to use for geometry optimization. 
 
 ‘1’   Quasi-Newton geometry optimization algorithm. This is  
    the default. 
 
 ‘2’   Conjugate-gradient geometry optimization algorithm. 
 
 
maxGeomoptSteps  Maximum number of geometry steps allowed for a   
    geometry optimization. The default is 5000. 
 
 
batchEnergyCutoff  This energy cutoff overrides the ConfCullE cutoffs in  
    Section 12. The default is large so when the user supplies a  
    wide range of conformers for geometry optimization less  
    are discarded and can be examined via formatted output  
    files. The default is 10000.0 Kcal/mol. 
 
 
The following apply constraints to selected atoms in the system so they do not move far 
away from a desired position during a geometry optimization. 
 
tetheredAtoms  File that identifies atoms in the system that will be tethered.  
   Multiple groups can be defined with each group being subject to  
   different constraints defined by the harmonic and polynomial  
   tether related keywords that follow below. The file name is   
   arbitrary. See Section XII for format  specification. 
 
   ~/path/tethered_atoms_file.txt 
 
tetherForceConstant 
 
 Specify a force constant if a harmonic constraint is required. 
 
 
To specify a polynomial constraint the following three options with no blank lines are 
required to give the polynomial function E(dr) = A*(dr/R)**n. 
 
---------- 
tetherScalingFactor 
 
 Real number A 
 
tetherDistance 
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 Real number R 
 
tetherOrder 
 
 Real number n 
---------- 
 
 
nfreezeAtoms  Number of ‘live’ atoms to freeze in space during a geometry   
   optimization by simply zeroing out their gradient. Currently, it is   
   recommended that this option is not used for calcnType ‘vm2’ or   
   ‘feprocess’. 
 
 
freezeAtoms  List of integers that identify which atoms to freeze. 
 
 integer1 integer2 integer3 integer4 …. 
 
 
Example usage 15 
---------------------------------------------------------------- 
# 
maxAtomGrad 
0.001 
# 
maxAtomGradLoose 
0.01 
# 
doPreoptSteps 
yes 
# 
preoptMethod  
2 
# 
maxPreoptSteps 
400 
# 
geomoptMethod 
1 
# 
maxGeomoptSteps 
10000 
# 
tetheredAtoms 
~/path/tethered_atoms_file.txt 
# 
# Constrained Group 1 
# 
tetherScalingFactor 
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100.0 
tetherDistance 
0.25 
tetherOrder 
12.0 
# 
# Constrained Group 2 
# 
tetherScalingFactor 
1.0 
tetherDistance 
0.5 
teherOrder 
12.0 
# 
---------------------------------------------------------------- 
 
=============================================================== 
 
15. Molecular mechanics potential energy calculation: methods and usage control 
 
level1mmMethod 
 

Choose the method to treat mm solvation for energy derivative based calculations 
i.e. energy+grad calculations, geometry optimizations, and hessian calculations. 
Currently, straightforward use of the defaults is suggested. Control and selection 
of parameters for the methods themselves is described in Sections 16-19 below. 

 
 ‘gb’  This is the default. Use a Generalized Born solvation method.   
 
 ‘cd’  Use a constant dielectric solvation model.  
 
 ‘dd’   Use distant dependent dielectric solvation model.  
 
level2mmMethod 
 

Choose the method to treat mm solvation for single-point energy corrections 
applied to, for example, any molecular geometries determined using 
level1mmMethod. For calcnType ‘energy’ and ‘energy+grad’ this single-point 
energy will be applied to the input structure(s). Control and selection of 
parameters for the methods themselves is described in Sections 16-19 below. 

 
 ‘pbsa’  This is the default. Use the Poisson-Boltzmann Surface-Area  
   (PBSA) solvation model. 
  

‘none’ The PBSA energy correction will not be carried out. Only level 1 
energies will be used. 
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allowZeroWaterLJ Controls whether Lennard-Jones parameters for water hydrogen 
atoms will be allowed to be zero – as they are in OPLS.  

 
 ‘yes’  Zero value parameters are allowed.  
 

‘no’ Zero value parameters are not allowed and are replaced with TIP3P 
parameters. This is the default. 

 
allowZeroLJ Controls whether Lennard-Jones parameters for non-water 

hydrogen atoms will be allowed to be zero – as they are in OPLS 
for polar hydrogens.  

 
 ‘yes’  Zero value parameters are allowed.  
 

‘no’ Zero value parameters are not allowed and are replaced with: 
  CHARMM/Dreiding:  𝜀𝜀𝑖𝑖 = −0.046 
     𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.2245⁄  
 AMBER/GAFF:  𝜀𝜀𝑖𝑖 = −0.0157 
       𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.6⁄  
 OPLS:    𝜀𝜀𝑖𝑖 = −0.03 
       𝑟𝑟𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0.2806⁄  
 
This is the default. 
 

 
mmAddFxdFxdConst  
 

Controls whether the fixed-fixed real atom constant energy terms e.g. bond, angle,  
dihedral, improper, vdW, pure Coulomb (not GB solvation pairs) are calculated  
once at the start of a calculation and added as corrective constants throughout the  
calculation. Addition of these terms may facilitate energy comparisons with other  
programs. 

 
‘yes’ Calculate the fixed-fixed constant energy terms. This is the 

default. 
 

‘no’ Do not calculate the fixed-fixed terms.  
 
 
Example usage 16 
---------------------------------------------------------------- 
# 
level1mmMethod 
gb 
# 
level2mmMethod 
pbsa 
# 
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---------------------------------------------------------------- 
 
 
=============================================================== 
 
16. Molecular mechanics Generalized Born (GB) solvation model control   
 
 gbSolvationModel 
 
 Choose the particular GB model used. 
 

‘still97’ Use Still’s analytical method for calculating the 
approximate Born radii for use in the GB solvation energy 
expression. See Qiu, Hollinger, and Still, J. Phys. Chem. A 
1997, 101, 3005-3014. This is the default.   

 
 ‘hawkins96’  Currently disabled due to ongoing reimplementation work. 
 
 
still97ParamSet 
 

Choose the P1-P5 scaling parameters for still97 GB solvation energy calculations. 
 
 ‘still’  Use the original scaling parameters from J. Phys.    
   Chem. A 1997, 101, 3005-3014. This is the default. 
 

‘gilson’ Use an alternative set of scaling parameters. See David, Luo, and 
Gilson, J. Comput. Chem. 2000, 21, 295-309. 

 
gbDielectricExt 
 

External solvent dielectric used in the GB solvation model. The default value is 
80.0, modeling bulk water. 

 
gbDielectricInt 
 

Internal (i.e. solute) dielectric used in the GB solvation model. The default value 
is 1.0. 

 
gbCavityRadii 
 

Choose the atomic cavity radii to use in the GB solvation model. 
 
 ‘halfRmin’ Use Rmin/2, where Rmin is the force field Lennard-Jones 

parameter, except for hydrogen atoms bonded to hetero atoms, 
which are set to 1.15 Å, and covalently bound fluorine atoms, 
which are set to 2.00 Å. This is the default, with the only 
exception being CHARMM combined with ‘still97’ and 
still97ParamSet option ‘gilson’ (see ‘legacy’ option below). 
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‘halfSigma’ Use σ/2, where σ is the force field Lennard-Jones parameter, 

except for hydrogen atoms bonded to hetero atoms, which are set 
to 1.15 Å, and covalently bound fluorine atoms, which are set to 
2.00 Å. 

 
‘bondi’ Use the Bondi van der Waals radii. See Bondi, A., JPC 1964, 68, 

441.  
 

‘mbondi’ Use the modified Bondi radii. See Rizzo, Aynechi, Case and 
Kuntz, J. Chem. Theory Comput. 2006, 2, 128-139. 

 
‘legacy’ Use Rmin/2, where Rmin is the force field Lennard-Jones 

parameter, except for hydrogen atom radii, which are all set to 1.20 
Å. This is the default for gbSolvationModel ‘still97’ and 
still97ParamSet ‘gilson’. 
Note: These are the radii used in all preceding versions of the 
VM2 software package i.e. version 2.1 and earlier, regardless of 
the force field and model. 

 
Example usage 17 
---------------------------------------------------------------- 
# 
gbSolvationModel 
still97 
# 
still97ParamSet 
still 
# 
gbCavityRadii 
legacy 
# 
---------------------------------------------------------------- 
 
 
 
17. Molecular mechanics constant (CD) dielectric solvation model control 
 
cdSolventDielectric 
 

Solvent dielectric constant used in the constant dielectric solvation model ‘mm-
cd’. The default value is 80.0. 

 
=============================================================== 
 
18. Molecular mechanics distance dependent (DD) dielectric solvation model control 
 
ddCoefficient 
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Coefficient used in the distance dependent dielectric solvation model ‘mm-dd’. 

 The default value is 4.0 resulting in the so-called 1/4r method. 
 
=============================================================== 
 
19. Molecular mechanics Poisson Boltzmann Surface Area (PBSA) solvation model 
control   
 
pbDielectricExt 
 

External solvent dielectric used in the PBSA solvation model. The default value 
is 80.0 modeling bulk water. 

 
pbDielectricInt 
 

Internal (i.e. solute) dielectric used in the PBSA solvation model. The default 
value is 1.0. 

 
pbsaCavityRadii 
 

Choose the atomic cavity radii to use in the PBSA solvation model. Currently the 
same radii are used for calculation of the electrostatic solvation energy (PB) and 
the non-polar solvation energy (SA). Note: If the ‘still97’/’gilson’ GB solvation 
model is being used, to match GB and PBSA cavity radii the ‘legacy’ option 
below must be explicitly selected. 
 
 ‘halfRmin’ Use Rmin/2, where Rmin is the force field Lennard-Jones 

parameter, except for hydrogen atoms bonded to hetero atoms, 
which are set to 1.15 Å, and covalently bound fluorine atoms, 
which are set to 2.00 Å. This is the default. 

 
‘halfSigma’ Use σ/2, where σ is the force field Lennard-Jones parameter, 

except for hydrogen atoms bonded to hetero atoms, which are set 
to 1.15 Å, and covalently bound fluorine atoms, which are set to 
2.00 Å.  

 
‘fitted’ Use atomic cavity radii fitted to reproduce solvation energies 

determined using explicit TIP3P water molecules and the AMBER 
force field. See Tan, Yang, and Luo, J. Phys. Chem. B 2006, 110, 
18680-18687. For GAFF atoms i.e. non-peptide atoms, ‘mbondi’ 
radii are used. 

 
‘bondi’ Use the Bondi van der Waals radii. See Bondi, A., JPC 1964, 68, 

441.  
 

‘mbondi’ Use the modified Bondi radii. See Rizzo, Aynechi, Case and 
Kuntz, J. Chem. Theory Comput. 2006, 2, 128-139. 
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‘legacy’ Use Rmin/2, where Rmin is the force field Lennard-Jones 

parameter, except for hydrogen atom radii, which are all set to 1.20 
Å.  
Note: These are the radii used in all preceding versions of the 
VM2 software package i.e. version 2.1 and earlier, regardless of 
the force field and model. 
 

sasaProbeRadius 
 

Set the solvent accessible surface area (SASA) probe radius. The default value is 
1.4 Angstroms. 

 
=============================================================== 
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IX. Ligand example 
 
1. CHARMM pathway using Discovery Studio Visualizer (DSV) 
 
1.1. Get mol2 data file for chosen molecule: ibuprofen 
 
Step 1: Go to, for example, the ZINC database website http://zinc15.docking.org and 
perform a search for ‘ibuprofen’. 
 
Step 2: Placeholder 
 
1.2. Load molecule into DSV 
 
Step 1: Placeholder 
 
 
 
 
2. CHARMM pathway using the web user interface CHARMMing 
 
2.1. Get mol2 data file for chosen molecule: ibuprofen 
 
Step 1: Go to, for example, the ZINC database website http://zinc15.docking.org and 
perform a search for ‘ibuprofen’. 
 
Step 2: Placeholder 
 
 
2.2. Load the molecule 
 
Step 1: Placeholder 
 
 
  
 
 
X. Protein-ligand example: HIV-1 protease and 38 inhibitors 
 
This is a full example of setup, execution of calculations, and collection of binding 
affinity results for a protein plus ligand series: the target protein is human HIV-1 protease 
and there are 38 ligands in the inhibitor series. (49)  
 
NOTE: You will need a working installation of AmberTools with the $AMBERHOME 
environment variable set to carry out the full procedure as described below. Please see 
http://ambermd.org/ to download AmberTools and for its documentation.  
 

http://zinc15.docking.org/
http://zinc15.docking.org/
http://ambermd.org/
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To proceed, first, untar the examples file vcCompChem_2_8_2_examples.tar.bz2, which 
is provided with the package: 
 

tar xvf vcCompChem_2_8_2_examples.tar.bz2 
 
The main directory for this example is: 
 
  vcCompChem_2_8_2_examples/protein_ligand/hiv1_protease_series_1/  
 
it contains a readme file: README.hiv1p , which describes the overall process, stepping 
through the following three directories in turn 
 

hiv1_protease_series_1/setup 
hiv1_protease_series_1/run 
hiv1_protease_series_1/results 

 
An outline of each step now follows. You can skip the setup section by going straight to 
Section 2. and making use of the “-d reference” option, described in Sections 2.1.2. and 
2.2.2. 
 
1. Setup 
 
The procedure starts with setup, namely structure preparation, typing, charge assignment 
of the protein target molecule and ligand inhibitors, and assignment of mobile and fixed 
protein atoms. 
 
1.1. Protein setup 
 
The basis for this setup is the crystal structure of HIV-1 protease and the co-crystalized 
inhibitor AD-81. The PDB access code for this structure is 2I0D. The multiple aspects to 
consider when preparing a protein for molecular mechanics calculations starting from 
PDB coordinates are described in Section V 3.1. of this manual. Furthermore, the 
AMBER reference manual, available through the link given above, provides detailed 
advice for the use of AmberTools in this process - see the section titled “Preparing PDB 
Files”. 
 
The files used for the following steps are found in the following subdirectory:  
 

hiv1_protease_series_1/setup/protein 
 
1.1.1. Remove all hetatoms and water atoms except atom 1580 
 
For this particular receptor and set of inhibitors, it is important to explicitly include one 
of the water molecules (atom number 1580) present in the 2I0D crystal structure. 
Therefore, edit the pdb file 2i0d.pdb deleting everything prior to the first ATOM entry, 
all HETATOM entries except for that of atom 1580, and everything except the END 
record after HETATOM 1580. Name the resulting file 2i0d_1580.pdb. 
 
1.1.2. Extract the co-crystalized ligand 



 133 

 
The co-crystalized ligand in 2I0D is used as a reference structure, so copy and edit the 
original 2i0d.pdb file, deleting all atoms except the AD-81 ligand atoms, and rename the 
file ad_81_from_2i0d.pdb . 
 
1.1.3. Prepare the PDB file for tleap 
 
Prepare the pdb file for tleap by running the script run_pdb4amber_1.sh, i.e.  
 
 ./run_pdb4amber_1.sh >& run_pdb4amber_1.log & 
 
This will produce the file 2i0d_1580_p4a.pdb as well as other files required by tleap. 
 
1.1.4. Run tleap to assign parameters 
 
Run tleap to assign parameters using the script run_tleap_2.sh.  
 
 ./run_tleap_2.sh >& run_tleap_2.log & 
 
This will produce .incpcrd, .prmtop, .mol2, and .pdb files. These will be named 
2i0d_1580_p4a_tleap.* 
 
1.1.5. Convert .prmtop and .inpcrd to .crd, .top, and .mol files 
 
Run the VeraChem amber pathway conversion tool prm2top.pyc using the script 
run_prm2top_3.sh, i.e. 
 
 ./run_prm2top_3.sh >& run_prm2top_3.log &  
 
This will produce the files 2i0d_1580_p4a_tleap_vm2.[crd,top,mol] These are the files 
that will be used to run the VM2 calculations. 
 
Compare your results with those provided in the ./reference subdirectory to ensure that 
the procedure was successful. 
 
1.2. Ligand Setup 
 
Some remaining protein setup steps require that the AD-81 ligand be already setup, so 
next, the full set of ligands are prepared and parameterized. The relevant subdirectories 
are: 
 
 hiv1_protease_series_1/setup/ligands/source_files 
 hiv1_protease_series_1/setup/ligands/vconf 
 hiv1_protease_series_1/setup/ligands/prepare_ligands 
 
1.2.1. Initial 2D structures 
 
Processing with AmberTools requires an input sdf file containing the ligands in 3D, with 
all hydrogens present and stereochemistry properly defined with parity values. For this 
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example, the ligands were first drawn in 2D by a chemical draw program referencing 
figures from the published experimental binding affinity article.(49) A 2D mol file was 
saved for each ligand.  
 
These 2D structures can be found in the ./source_files subdirectory of ligands/. A simple 
python script (mol_2_sdf.py) is used to assemble them into a single sdf file called 
umass_1.sdf. 
 
 python mol_2_sdf.py -o umass_1.sdf 
 
To process only a chosen subset of the prepared 2D structures a key file can be used that 
contains the names of the ligands, one on each line, to be processed e.g. 
 
 python mol_2_sdf.py -o umass_1.sdf -k ligand_key_5.txt 
 
 
1.2.2. 2D to 3D conversion 
 
VeraChem’s Vconf program is used to convert these 2D structures to 3D. The relevant 
files are found in the vconf/ subdirectory. First, copy over the umass_1.sdf file generated 
by the last step, and then execute the run_vconf.sh script to carry out the conversion:  
 
 ./run_vconf.sh & 
 
The resulting 3D structures can be found in the file 
 
 hiv1_protease_series_1/setup/ligands/vconf/umass_1_vconf.sdf 
 
You can compare your results against those provided in the reference/ subdirectory. 
 
1.2.3. Generate partial charges and assign parameters to the ligands  
 
Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones 
parameters, while atom partial charges can be generated either by VeraChem’s VCharge 
method or by AM1-BCC through AmberTools. The resulting prmtop and inpcrd files are 
then converted to the [crd,top,mol] file set used by VM2.  
 
The prepareLigands.pyc script automates this process. First, go to the prepare_ligands 
directory 
 
  hiv1_protease_series_1/setup/ligands/prepare_ligands 
 
then copy over the 3D sdf file 
 
 cp ../source_files/umass_1.sdf . 
 
Then, to execute the script choosing VCharge partial atomic charges type: 
 
 ./run_prepareLigands_vcharge.sh & 
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and to assign charge using AM1-BCC type:  
 
 ./run_prepareLigands_am1-bcc.sh & 
 
While VCharge takes less than a minute for the set of 28 ligands, generation of AM1-
BCC partial charges requires a QM calculation, which can take a considerable amount of 
time, e.g., approximately 3 hours on a Xeon E5-2667, 3.2GHz cpu.  
 
You can compare your results against those in the reference subdirectories. 
 
 
1.3. Define fixed and mobile protein atoms 
 
The choice of the included mobile and fixed protein atoms can have a significant impact 
on the final binding energy predictions produced by the VM2 method. VeraChem 
recommends inclusion of enough mobile atoms to capture relevant aspects such as loop 
movement on binding, while avoiding inclusion of large numbers of atoms as mobile, 
which are effectively spectators, so as to keep calculations manageable with respect to 
turnover times, and also minimize the occurrence of spurious minima that sometimes 
occur due to force field inadequacies. 
 
A process for defining mobile and fixed atoms for subsequent free energy calculations is 
now described.  
 
1.3.1. Generate co-crystalized ligand based AD-81 conformation 
 
First, go to the directory 
 
 setup/define_fixed_and_mobile_atoms/1_gen_coxtal_ligand_conf 
 
Next, generate a conformation of the co-crystalized ligand AD-81 to use as the reference 
coordinates to carve out the mobile and fixed atoms in subsequent steps. This 
is achieved by 'snapping' scaffold atoms from the AD-81 structure generated 
in Step 2 above, to the corresponding positions of the co-Xtal AD-81 scaffold 
atoms in the 2I0D PDB file i.e. scaffold atoms in the file ad_81_from_2i0d.pdb 
generated in Step 1.2.2 
 
The required files are: 
 
ad_81_pdbsnap_confs.inp  : VM2 input file 
ad_81.crd    : coordinate file generated in Section 1.2.3. 
ad_81.top    : topology/parameter file fin Section 1.2.3. 
ad_81.mol    : mol file generated in Section 1.2.3. 
ad_81_from_2i0d.pdb   : reference ad_81 coordinates from Section 1.1.2. 
 
Generate the AD-81 conformations by typing: 
 
 ./runvm2.bsh >& runvm2.log 
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The output of interest is the file: 
 
 ad_81.confsearch_rank1.crd 
 
which contains the coordinates of lowest energy AD-81 conformer ‘snapped’ to the co-
crystalized ligand scaffold atoms. The coordinate file is used in the next step.  
 
1.3.2. Relax all hydrogen atoms in the system 
 
To relieve close contacts that can occur on hydrogen atom placement, all hydrogen atom 
positions in the protein and AD-81 ligand are optimized according to the force field 
energy function.   
 
Go to the directory 
 
 setup/define_fixed_and_mobile_atoms/2_opt_all_protein_h 
 
then copy the file required from last step and rename it: 
 
    cp ../1_gen_coxtal_ligand_conf/ad_81.confsearch_rank1.crd ad_81_snap2pdb.crd 
 
The required files for this step are: 
 
2i0d_1580_p4a_tleap_hopt.inp : VM2 package input file for H atom optimization 
ad_81_from_2i0d.pdb   : reference ad_81 coordinates from Section 1.1.2. 
 
2i0d_1580_p4a_tleap_vm2.crd            | Protein coordinates, parameters etc. 
2i0d_1580_p4a_tleap_vm2.top  <--| generated by Section 1.1. above. 
2i0d_1580_p4a_tleap_vm2.mol           | Copied directly from ./protein 
 
ad_81_snap2pdb.crd                   | ad_81_snap2pdb.crd is the just generated 
ad_81.top                    <---| ad_81.confsearch_rank1.crd copied and 
ad_81.mol                            | renamed. The top and mol files are as in 1.3.1. 
 
Relax all hydrogen atom positions by typing: 
 
 ./runvm2.bsh >& runvm2.log 
 
The outputs of interest are the files 
 
  2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd 
  ad_81_snap2pdb.geomopt_rank1.crd 
 
which contain the lowest energy coordinates of the protein and ligand AD-81 after 
hydrogen atom optimization. These coordinates are used in the next step. 
 
1.3.3. Distance based generation of real/live set 
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Carve out a mobile and fixed set of protein atoms. VM2 uses so-called real and live 
sets, where the 'real' set are all the atoms included in the calculation (mobile and 
fixed) and the 'live' set is the subset of the 'real' set that is mobile. In this step, 
the VM2 package is used to carve out a 'real' set that comprises all residues that have 
an atom within 7 Angstoms any atom of the supplied AD-81 ligand coordinates, and a 
'live' set of all protein atoms within 5 Angstoms of any atom of the supplied AD-81 
ligand coordinates. 
 
Go to the directory 
 
 setup/define_fixed_and_mobile_atoms/ 3_dist_based_real_live_set 
 
then copy and rename the required files from the last step: 
 
    cp ../2_opt_all_protein_h/2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd 
    2i0d_1580_p4a_tleap_vm2_opth.crd 
 
    cp ../2_opt_all_protein_h/ad_81_snap2pdb.geomopt_rank1.crd 
ad_81_snap2pdb_opth.crd 
 
The required files for this step are: 
 
2i0d_1580_p4a_tleap_genlivereal.inp   <---  VM2 package input file for generation of  
      'real' atom set of all atoms within 7   
      Angstroms of any atom in the supplied AD- 
      81 ligand crd, and a 'live' atom set within 5  
      Angstroms. 
 
 2i0d_1580_p4a_tleap_vm2_opth.crd      | The crd file is the just generated 
 2i0d_1580_p4a_tleap_vm2.top          <--| 2i0d_1580_p4a_tleap_vm2.geomopt_rank1.crd  
 2i0d_1580_p4a_tleap_vm2.mol              | renamed. The top and mol are unchanged. 
 
 ad_81_snap2pdb_opth.crd               | ad_81_snap2pdb_opth.crd is the just generated 
 ad_81.top                           <---| ad_81_snap2pdb.geomopt_rank1.crd from above 
 ad_81.mol                                        | renamed. The top and mol files are unchanged. 
 
Generate the real and live sets by typing: 
 
 ./runvm2.bsh >& runvm2.log 
 
The following output files allow you to visualize the ‘live’ set produced: 
 
2i0d_1580_p4a_tleap_genlivereal.mol2   <--Load into visualizer to see live set produced. 
2i0d_1580_p4a_tleap_genlivereal.pdb 
2i0d_1580_p4a_tleap_genlivereal.sdf 
 
To see the 'real' set of atoms defined in by these distance cutoffs, run the same 
calculation with the input file 2i0d_1580_p4a_tleap_genlivereal.inp changed to output 
'real' atoms: 
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# 
atomsToOutput 
real 
# 
 
Generated output files required for running VM2: 
 
2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt   <---  This file contains the atom  
        numbers of the live and real  
        atoms generated by the  
        applied distance cutoffs. 
 
Once you are happy with the defined real/live sets copy the protein data files required for 
VM2 runs directly into the directory define_fixed_and_mobile_atoms/   i.e. 
 
    cp 2i0d_1580_p4a_tleap_vm2.mol ../. 
    cp 2i0d_1580_p4a_tleap_vm2_opth.crd ../. 
    cp 2i0d_1580_p4a_tleap_vm2.top ../. 
    cp 2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt ../2i0d_5_7_live_real.txt 
 
NOTE: mandatory renaming of 2i0d_1580_p4a_tleap_vm2_opth_liverealatoms.txt 
to include the text “live_real” 
 
The setup stage is now complete. 
 
2. Run Calculations 
 
The next step is to run the protein-ligand, protein, and ligand, free energy calculations. 
The relevant directories and readme file are: 
  
 hiv1_protease_series_1/run/1_ligand_confgen 
 hiv1_protease_series_1/run/2_vm2_runs 
 hiv1_protease_series_1/run/README.runvm2 
 
Optionally, ligand conformations can be pre-generated in /1_ligand_confgen and used to 
seed the VM2 calculations in /2_vm2_runs. 
 
2.1. Generation of Ligand Starting Conformations 
 
Two types of pre-generated ligand conformations can be utilized in this example. One is 
‘snapped’ conformations, where atoms in each ligand common to a, for example, co-
crystalized ligand are, with an applied guiding force, superimposed, while conformational 
space of the remaining atoms is sampled. The other is randomly orientated conformations 
of the ligand, suitable for when no pose information is known, only the location of the 
binding site. 
 
2.1.1. Example run 
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Go to the directory 
 
 run/1_ligand_confgen 
 
This directory contains a python script to generate run directories for conformer 
generation, and a python script to run the conformer generation calculations. Example 
usage is as follows: 
 
 python build_ligand_start_conf_dirs.py -t ad_81_from_2i0d.pdb 
 
will first populate the directories  
 
 1_ligand_confgen/gen_ligand_start_confs_snap 
 
 1_ligand_confgen/gen_ligand_start_confs_rndm 
 
with the required subdirectories, input files, and data files to run. Then the following 
command 
 
 python run_ligand_confs_gen.py -r slurm 
 
will step through all these subdirectories, generating slurm scripts, and submitting the 
calculations to the batch queue. See Section 2.1.3 below for additional submission 
options through the -r flag. 
 
Note: Requirements for this example run are: 
 
ad_81_from_2i0d.pdb  <---  must be present in /setup/ligands/prepareLigands 
 
scaffold_mapping_wkey.txt <---  must be present in the current directory and contain 
     the mapping of each ligand onto the reference  
     ligand 
 
2.1.2. Options available for building conformer generation directories 
 
The python script build_ligand_start_conf_dirs.py can take a number of arguments 
for non-default control the source of the system data etc.: 
 
   -d or --data     reference        : Populate 'input_data' directory using the 
                                                  data in the setup 'reference' directories 
                                                  e.g. /setup/ligands/prepareLigands/reference, 
                                                  and subsequently build the run directories 
                                                  with this data. 
 
                         new                 : Populate 'input_data' directory using the 
                                                  new data in the setup directories 
                                                  e.g. /setup/ligands/prepareLigands, 
                                                  and subsequently build the run directories 
                                                  with this data. (Default behavior.) 
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                         reuse               : Reuse the data from an already populated 
                                                  'input_data' directory. 
 
 
   -s or --startconfs    random     : Make a run directory for each ligand 
                                                  in the series for generation of ligand 
                                                  conformers in random orientations and 
                                                  with their center of geometry (COG) placed 
                                                  at a template ligand's COG. 
 
                                 snap          : Make a run directory for each ligand 
                                                  in the series for generation of ligand 
                                                  conformers where scaffold atoms are 
                                                  'snapped' to corresponding template ligand 
                                                  scaffold atoms (via applied harmonic 
                                                  potentials). 
 
                                 all            : Make both of the above run directories. 
                                                  (Default behavior.) 
 
 
   -t or --template      'template_filename'    : Name of file containing template ligand 
                                                                      coordinates e.g. co-xtal ligand or 
                                                                      previously docked ligand. Required unless 
                                                                     '-d reuse' option set. 
 
 
   -c or --clear         input                  : Delete the contents of 'input_data' directory. 
 
                              rundirs                : Delete the contents of the run directories 
                                                           'gen_ligand_start_confs_rndm' and 
                                                           'gen_ligand_start_confs_snap'. 
 
                                 all                    : Delete content from the 'input_data' directory 
                                                           and the run directories. 
 
Example usage: 
 
    python build_ligand_start_conf_dirs.py -c rundirs -d reuse 
 
This will clear the contents of previously generated run directories and use the data 
already present in ./input_data to regenerate the run directories i.e. data will not be taken 
from the setup directories in this case. 
 
2.1.3. Options available for running conformer generation 
 
The python script run_ligand_confs_gen.py can take a number of arguments: 
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   -s or --startconfs    random                 : Step through each ligand directory in 
                                                                /gen_ligand_start_confs_rndm and 
                                                              submit a calculation for generation of ligand 
                                                              conformers in random orientations and 
                                                              with their center of geometry (COG) placed 
                                                              at a template ligand's COG. 
 
                                snap                    : Step through each ligand directory in 
                                                             gen_ligand_start_confs_snap and 
                                                             submit a calculation for generation of ligand 
                                                             conformers where scaffold atoms are 
                                                            'snapped' to corresponding template ligand 
                                                             scaffold atoms (via applied harmonic 
                                                             potentials). 
 
                                  all                    : Carry out both sets of calculations. 
                                                            (Default behavior.) 
 
 
   -r or --runscript     bsh                    : Generate and use bash shell scripts for submission 
                                                             of each calculation. (Default behavior.) 
 
                                 csh                    : Generate and use c-shell scripts for submission 
                                                            of each calculation. 
 
                                pbs                    : Generate a pbs script for submission of each 
                                                           calculation to a queue. 
 
                              slurm                  : Generate a slurm script for submission of each 
                                                           calculation to a queue. 
 
   -q or --partition     'queue name'    : For pbs and slurm run scripts, the name of the                        
                                                 queue or partition if the default queue is not        
                                                 being used. 
 
 
   -p or --prepmode                            : If present the run scripts are generated and placed 
                                                            in every directory, but the calculations are not 
                                                            submitted. 
 
 
2.2. Protein-ligand calculations 
 
Two main types of VM2 protein-ligand free energy calculation are available. One is 
regular VM2, which carries out iterative rounds of conformational searching until 
convergence; the other type carries out geometry optimizations of protein-ligand 
conformations constructed from ligand conformers read-in and processes them for free 
energy. The latter is much faster, but much less exhaustive in terms of sampling 
conformational space. In combination, there are three ways to seed these two VM2 
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calculation types with ligand conformers: multiple conformers with selected atoms 
‘snapped’ to a reference ligand – see Section 2.1. above; multiple conformers randomly 
orientated in space, but placed at the location of the binding site – see Section 2.1. above, 
and a single conformer, based on the position and geometry in which it was prepared 
originally. This provides for six different overall VM2 calculation schemes, which cover 
various types of use scenarios. 
 
2.2.1. Example run 
 
Go to the directory 
 
 run/2_vm2_runs 
 
This directory contains a python script to generate run directories for protein-ligand VM2 
free energy calculations, and a python script to step through the directories and run the 
calculations. Example usage is as follows: 
 
 python build_vm2_run_dirs.py -t ad_81_from_2i0d.pdb 
 
will first populate the following six directories, which cover the calculation types 
described above, with the required subdirectories, input files, and data files to run.  
 
 /2_vm2_runs/fast_vm2_snap 
 /2_vm2_runs/fast_vm2_rndm 
 /2_vm2_runs/fast_vm2_single 
 /2_vm2_runs/vm2_snap 
 /2_vm2_runs/vm2_rndm 
 /2_vm2_runs/vm2_single 
 
Note: For  “_snap” and “_rndm” types, the corresponding pre-generation of ligand 
conformers – Section 2.1. - must already have occurred. 
 
Then the following command: 
 
 python run_vm2_calculations.py -s snap -v fast -r slurm  
 
will step through the subdirectories of /2_vm2_runs/fast_vm2_snap, generating slurm 
scripts, and submitting the calculations to the batch queue. Similarly, any of the other five 
calculations types may be run by setting the appropriate flags – see Section 2.2.2 below. 
See Section 2.2.3 below for additional submission options through the -r flag. 
 
2.2.2. Options available for building VM2 directories 
 
The python script build_vm2_run_dirs.py can take a number of arguments 
for non-default control of the source of the system data etc.: 
 
   -d or --data     reference       : Populate 'input_data' directory using the 
                                                  data in the setup 'reference' directories 
                                                  e.g. /setup/ligands/prepareLigands/reference and 
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                                                  /setup/define_fixed_and_mobile_atoms/reference, 
                                                  and the ligand start conformer generation 
                                                  reference directory /run/1_ligand_confgen/reference 
                                                  and subsequently build the run directories 
                                                  with this data. 
 
                         new                : Populate 'input_data' directory using the new data in the                
     setup directories e.g. /setup/ligands/prepareLigands and 
                                                  /setup/define_fixed_and_mobile_atoms/ 
                                                  and the ligand start conformer generation directories   
     /run/1_ligand_confgen/gen_ligand_start_confs_rndm 
                                                  and /run/1_ligand_confgen/gen_ligand_start_confs_snap 
                                                  and subsequently build the run directories 
                                                  with this data. (Default behavior.) 
 
                         reuse               : Reuse the data from an already populated 
                                                  'input_data' directory. 
 
 
   -s or --startconfs    random   : Requests run directory set up for VM2 free energy 
                                                  calculations where randomly oriented ligand conformers 
                                                  are placed in the active site and are used to generate 
                                                  starting protein-ligand conformations. 
 
                         snap                : Requests run directory set up for VM2 free energy 
                                                  calculations where ligand conformers in which scaffold 
                                                  atoms have been 'snapped' to corresponding scaffold 
                                                  atoms of a template ligand (e.g. co-xtal ligand) are 
                                                  used to generate starting protein-ligand conformations. 
 
                         single             : Requests run directory set up for VM2 free energy 
                                                  calculations where a single ligand starting conformation 
                                                  and placement is used based on the supplied ligand .crd   
      file coordinates. The placement can be adjusted if a    
      template ligand is supplied and the place ligand flag set;  
      see -t, --template and  -p, --placelig below. Only used a 
                                                  non-adjusted ligand .crd if you prepared the ligand in a 
                                                  very good placement and pose in the receptor binding site. 
 
                         all                   : Requests both types of directory to be set up. 
                                                  (Default behavior.) 
 
   -t or --template      'template_filename'    : Name of file containing template ligand 
                                                             coordinates e.g. co-xtal ligand or 
                                                             previously docked ligand. Could simply be 
                                                             coordinates that signifiy the loacation of 
                                                             the binding site. Not required unless 
                                                             random start conformers are in use or the  
               place ligand option just below is set. 
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   -p or --placelig      tcog        : Place ligand .crd coordinates center of geometry 
                                                  at template ligand's center of geometry. 
 
   -c or --clear         input        : Delete the contents of 'input_data' directory. 
 
                            rundirs        : Delete the contents of the run directories. 
 
                                   all         : Delete content from the 'input_data' directory 
                                                  and the run directories. 
 
   -v or --vm2type    regular    : Requests run directory set up for regular VM2 
                                                  protein-ligand free energy calculations, which 
                                                  carry out extensive conformational searching. 
 
                                fast         : Requests run directory set up for fast VM2 
                                                  protein-ligand free energy calculations, which 
                                                  calculate free energies via geometry optimizing 
                                                  protein-ligand conformations generated from 
                                                  read-in ligand conformers previously snapped to 
                                                  a template scaffold. 
 
                                all           : Requests set up for both types of VM2 calculation. 
     
 
   -k or --keyfile       'ligand_key_filename'  : Name of text file containing the subset of  
      ligands in the series - one on each line (see  
      ligand_key_5.txt.) 
 
 
2.2.3. Options available for running VM2 calculations 
 
The python script run_ligand_confs_gen.py can take a number of arguments: 
 
   -s or --startconfs    random   : Requests that VM2 free energy calculations are run 
                                                  for the series where randomly oriented ligand conformers 
                                                  are placed in the active site and are used to generate 
                                                  starting protein-ligand conformations. 
 
                                 snap        : Requests that VM2 free energy calculations are run 
                                                  for the series where ligand conformers in which scaffold 
                                                  atoms have been 'snapped' to corresponding scaffold 
                                                  atoms of a template ligand (e.g. co-xtal ligand) are 
                                                  used to generate starting protein-ligand conformations. 
                                                  (Default behavior.) 
 
          single  : Requests run directory set up for VM2 free energy 
                                                  calculations where a single ligand starting conformation 
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                                                  and placement is used based on the supplied ligand .crd   
      file coordinates. (See above.) 
 
                                 all           : Requests all types of run be carried out. 
 
 
 
   -r or --runscript     bsh          : Generate and use bash shell scripts for submission 
                                                  of each calculation. (Default behavior.) 
 
                         csh                 : Generate and use c-shell scripts for submission 
                                                  of each calculation. 
 
                         pbs                 : Generate a pbs script for submission of each 
                                                  calculation to a queue. 
 
                         slurm             : Generate a slurm script for submission of each 
                                                  calculation to a queue. 
 
   -q or --partition     'queue name'           : For pbs and slurm run scripts, the name of the  
           queue or partition if the default queue is not  
           being used. 
 
   -p or --prepmode                  : If present the run scripts are generated and placed 
                                                  in every directory, but the calculations are not 
                                                  submitted. 
 
 
   -v or --vm2type    regular    : Requests regular VM2 protein-ligand free energy 
                                                  calculations for the series, which carry out 
                                                  extensive conformational searching. 
 
                                fast         : Requests fast VM2 VM2 protein-ligand free energy 
                                                  calculations for the series, which  calculate 
                                                  free energies via geometry optimizing 
                                                  protein-ligand conformations generated from 
                                                  read-in ligand conformers snapped to a template 
                                                  scaffold. (Default behavior.) 
 
                               all             : Requests both types of VM2 calculation are run for 
                                                  the series. 
 
   -i or --mpiprocs  n (integer) : Sets the number of MPI processes to run. Currently 
                                                  all processes must run on the same node - though 
                                                  hand editing of run scripts can remove this restriction. 
                                                  The default is 8. 
 
   -g or --gpu                             : If present requests use of CUDA enabled VM2              
       executable. 
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   -o or --ompthreads    1          : If -g not set results in MPI parallelism only. 
                                                   Enforced for ligand only runs. 
 
                                     2          : If set will result in MPI+OpenMP run (8 MPI processes              
       (default), 2 OpenMP threads per process). If -g also set  
       will result in MPI+OpenMP+CUDA parallelism. 
 
                                    4           : Same as previous, but 4 OpenMP threads. 
 
 
   -m or --molsystems    complexes+ligands      | 
                                                                            | 
                                       complexes+protein      | 
                                                                            | 
                                           protein+ligand         | 
                                                                            | 
                                             complexes              |----> Run subset of the moleculer system  
          | types. 
                                                                            | 
                                                 ligands                | 
                                                                            | 
                                                 protein                | 
 
                                                   all                    : Default. Run ligands, complexes, and       
           protein. 
 
Example usage: 
 
    nohup python run_vm2_calculations.py -g -o 2 
 
Run default fast-snap set of calculations (fast_vm2_snap directory) with 8 MPI process 
calculations for ligand calculations, but MPI+OpenMP+CUDA calculations for the 
complexes and the protein. 
 
This run utilizes 8 MPI processes with 1 GPU per MPI process and 2 OpenMP 
threads per MPI process. It therefore requires 16 compute cores and 8 GPUs. 
 

 
3. Results Collection 
 
When the protein-ligand, protein, and ligand VM2 free energy calculations for the 
complete ligand series have completed, the binding free energies may then be calculated, 
and the formatted files, e.g., .mol2, .pdb, .sdf, containing the associated molecular 
structures collected. 
 
The relevant directories and readme file are: 
 
 hiv1_protease_series_1/results 
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 hiv1_protease_series_1/results/conformers 
 hiv1_protease_series_1/results/README.results 
 
3.1. Generate binding free energy spreadsheets and collect conformer files 
 
Go to the directory 
 
 hiv1_protease_series_1/results 
 
To generate spreadsheets and collect molecule conformer files for the “fast_vm2_snap” 
calculations from Section 2.2.1 type: 
 
 python create_vm2_summaries.py -c fast_vm2_snap -n 2i0d -l ad_81 
 
Requirements: 
 
File containing experimental data:  experimental_data.csv 
 
The filename must contain “experimental_data”.  
The format is <proteinname_ligandname>, <value>  e.g. 
 
2i0d_ad_12,-9.367 
2i0d_ad_17,-14.203 
2i0d_ad_23,-11.559 
2i0d_ad_24,-10.126 
2i0d_ad_32,-10.337 
2i0d_ad_33,-12.458 
: 
 
Output spreadsheets: 
 
 results/2i0d_fast_vm2_snap_complex.csv 
 results/2i0d_fast_vm2_snap_protein.csv 
 results/fast_vm2_snap_ligand.csv 
 results/2i0d_fast_vm2_snap_SUMMARY.csv 
 
The last of these contains the binding free energies. 
 
Output conformer files: 
 
For the protein, each ligand, and each protein-ligand complex, formatted files (e.g. mol2, 
pdb, sdf, xyz) containing the lowest energy conformer, and the eight lowest energy 
conformers are written to: 
 
 results/conformers/fast_vm2_rndm/complexes 
 results/conformers/fast_vm2_rndm/ligands 
 results/conformers/fast_vm2_rndm/protein  
 
3.2. Results generation options 
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For the script create_vm2_summaries.py the following two commandline arguments are 
mandatory with the following options: 
 
    -c or --calctype       fast_vm2_snap       : Identify the calculation type 
                                                                    to collect and summarize run 
                                   fast_vm2_rndm        data for. 
 
                                   fast_vm2_single 
 
    vm2_snap 
 
   vm2_rndm 
 
   vm2_single 
 
   -n or --receptorname           : Provide the name of the receptor 
                                                 e.g. for this case the protein 
                                                 is named “2i0d” 
 
There are two additional non mandatory arguments: 
 
   -l or --refligand                   : Provide the name of the reference 
                                                 ligand to be used in relative binding 
                                                 affinity calculation i.e. for Delta(DeltaG) 
                                                 The default is no reference. 
 
   -g or --getconfs      <number of confs>     : The number of conformers to keep in the 
                                                 extracted formated conformer files e.g. 
                                                 .sdf, .mol2, .pdb. The default is 8 plus 
                                                 a set of formatted files each with the 
                                                 lowest energy conformer. 
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XI. Host-guest example: Sampl6 Octa-acids and guests 
 
This is a full example of setup, execution of calculations, and collection of binding 
affinity results for the host molecules octa-acid (OA) and methylated octa-acid (TEMOA) 
and series of eight guests (ligands), for a total of sixteen complexes. The data sets – 
starting SD files and experimental binding affinities - are taken from the Sampl6 
challenge repository. (50) 
 
NOTE: You will need a working installation of AmberTools with the $AMBERHOME 
environment variable set to carry out the full procedure as described below. Please see 
http://ambermd.org/ to download AmberTools and for its documentation.  
 
To proceed, first, untar the examples file vcCompChem_2_8_2_examples.tar.bz2, which 
is provided with the package: 
 

tar xvf vcCompChem_2_8_2_examples.tar.bz2 
 
The main directory for this example is: 
 vcCompChem_2_8_2_examples/host_guest/Sampl6/oa_gaff_vcharge  
 
it contains a readme file: README.sampl6.oa , which describes the overall process, 
stepping through the following three directories in turn 
 

Sampl6/oa_gaff_vcharge/setup 
Sampl6/oa_gaff_vcharge/run 
Sampl6/oa_gaff_vcharge/results 

 
An outline of each step now follows. You can skip the setup section by going straight to 
Section 2. and making use of the “-d reference” option, described in Sections 2.1.2. and 
2.2.2. 
 
1. Setup 
 
The procedure starts with setup, namely structure preparation, typing, and charge 
assignment of the host and guest molecules. A step-by-step description of the setup 
process now follows. Also, see: 
 
 Sampl6/oa_gaff_vcharge/setup/README.setup 
 
1.1. Host Setup 
 
The relevant subdirectories are: 
 
 Sampl6/oa_gaff_vcharge/setup/hosts/source_files 
 Sampl6/oa_gaff_vcharge/setup/hosts/prepareHosts 
 

https://github.com/MobleyLab/SAMPL6
http://ambermd.org/
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1.1.1. Source files 
 
The /source_files directory contains .sdf, .mol2, and .pdb files for the host molecules 
octa-acid (OA) and methylated octa-acid (TEMOA) taken from the Sampl6 challenge 
repository. It also contains .mol files, derived from the .sdf files, along with a script 
mol_2_sdf.py to combine these .mol files into a single SD file, oa_hosts.sdf, for 
processing in /prepareHosts. 
 
 python  mol_2_sdf.py oa_hosts.sdf  
 
1.1.2. Generate partial charges and assign parameters 
 
Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones 
parameters, while atom partial charges can be generated either by VeraChem’s VCharge 
method or by AM1-BCC through AmberTools – for this example VCharge will be used. 
The resulting prmtop and inpcrd files are then converted to the [crd,top,mol] file set used 
by VM2.  
 
The prepareLigands.pyc script (it can be used for host molecules as well as ligands) 
automates this process. First, go to the prepareHosts directory 
 
  Sampl6/oa_gaff_vcharge/setup/hosts/prepareHosts 
 
then copy over the host sdf file just generated 
 
 cp ../source_files/oa_hosts.sdf . 
 
Then, to execute the script choosing VCharge partial atomic charges type: 
 
 ./run_prepareHosts.sh & 
 
This script contains the command line: 
 
 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc -charge_method 
 vcharge oa_hosts.sdf >& run_prepareHosts.out & 
 
To assign charge using AM1-BCC instead remove the charge method argument:  
 
 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc oa_hosts.sdf >& 
 run_prepareHosts.out & 
 
You can compare your results against those in the reference subdirectories. 
 
1.2. Ligand Setup 
 
The relevant subdirectories are: 
 
 Sampl6/oa_gaff_vcharge/setup/ligands/source_files 



 151 

 Sampl6/oa_gaff_vcharge/setup/ligands/prepareLigands 
 
The steps basically mirror those just described for the host molecules. 
 
1.2.1. Source files 
 
The /source_files directory contains .sdf and .mol2 files for the ligand molecules OA-G0 
to OA-G7 taken from the Sampl6 challenge repository. It also contains a script 
combine_sdfs.py to combine the SD files into a single SD file, oa_ligands.sdf, for 
processing in /prepareLigands. 
 
 python  combine_sdfs.py oa_ligands.sdf 
 
1.2.2. Generate partial charges and assign parameters 
 
Ambertools is used to assign bond, angle, torsion, and non-bonded Lennard-Jones 
parameters, while atom partial charges can be generated either by VeraChem’s VCharge 
method or by AM1-BCC through AmberTools – for this example VCharge will be used. 
The resulting prmtop and inpcrd files are then converted to the [crd,top,mol] file set used 
by VM2.  
 
The prepareLigands.pyc script automates this process. First, go to the prepareLigands 
directory 
 
  Sampl6/oa_gaff_vcharge/setup/hosts/prepareLigands 
 
then copy over the ligand sdf file just generated 
 
 cp ../source_files/oa_ligands.sdf . 
 
Then, to execute the script choosing VCharge partial atomic charges type: 
 
 ./run_prepareLigands.sh & 
 
This script contains the command line: 
 
 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc -charge_method 
 vcharge oa_ligands.sdf >& run_prepareLigands.out & 
 
To assign charge using AM1-BCC instead remove the charge method argument:  
 
 $VCHOME/exe/vc_python $VCHOME/exe/prepareLigands.pyc oa_ligands.sdf 
>&  run_prepareLigands.out & 
 
You can compare your results against those in the reference subdirectories. 
 
The setup stage is now complete. 
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2. Run Calculations 
 
The next step is to run the host-guest, host, and ligand, free energy calculations. The 
relevant directories and readme file are: 
  
 Sampl6/oa_gaff_vcharge/run/1_ligand_confgen 
 Sampl6/oa_gaff_vcharge/run/2_vm2_runs 
 Sampl6/oa_gaff_vcharge/run/README.runvm2 
 
Ligand conformations can be pre-generated in /1_ligand_confgen and used to seed the 
VM2 calculations in /2_vm2_runs. 
 
2.1. Generation of Ligand Starting Conformations 
 
Randomly orientated conformations of the ligand are generated, which are read-in to seed 
the actual host-guest VM2 free energy calculations. 
 
2.1.1. Example run 
 
Go to the directory 
 
 run/1_ligand_confgen 
 
This directory contains a python script to generate run directories for conformer 
generation, and a python script to run the conformer generation calculations. Example 
usage is as follows: 
 
 python build_ligand_start_conf_dirs.py 
 
will first populate the directory 
 
 1_ligand_confgen/gen_ligand_start_confs_rndm 
 
with the required subdirectories, input files, and data files to run. Then the following 
command 
 
 python run_ligand_confs_gen.py -r slurm 
 
will step through all these subdirectories, generating slurm scripts, and submitting the 
calculations to the batch queue. See Section 2.1.3 below for additional submission 
options through the -r flag. 
 
2.1.2. Options available for building conformer generation directories 
 
The python script build_ligand_start_conf_dirs.py can take a number of arguments 
for non-default control the source of the system data etc.: 
 
   -d or --data     reference        : Populate 'input_data' directory using the 
                                                  data in the setup 'reference' directories 
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                                                  e.g. /setup/ligands/prepareLigands/reference, 
                                                  and subsequently build the run directories 
                                                  with this data. 
 
                         new                 : Populate 'input_data' directory using the 
                                                  new data in the setup directories 
                                                  e.g. /setup/ligands/prepareLigands, 
                                                  and subsequently build the run directories 
                                                  with this data. (Default behavior.) 
 
                         reuse               : Reuse the data from an already populated 
                                                  'input_data' directory. 
 
   -c or --clear         input                  : Delete the contents of 'input_data' directory. 
 
                              rundirs                : Delete the contents of the run directories 
                                                           'gen_ligand_start_confs_rndm' and 
                                                           'gen_ligand_start_confs_snap'. 
 
                                 all                    : Delete content from the 'input_data' directory 
                                                           and the run directories. 
 
Example usage: 
 
    python build_ligand_start_conf_dirs.py -c rundirs -d reuse 
 
This will clear the contents of previously generated run directories and use the data 
already present in ./input_data to regenerate the run directories i.e. data will not be taken 
from the setup directories in this case. 
 
2.1.3. Options available for running conformer generation 
 
The python script run_ligand_confs_gen.py can take a number of arguments: 
 
   -r or --runscript     bsh                    : Generate and use bash shell scripts for submission 
                                                             of each calculation. (Default behavior.) 
 
                                 csh                    : Generate and use c-shell scripts for submission 
                                                            of each calculation. 
 
                                pbs                    : Generate a pbs script for submission of each 
                                                           calculation to a queue. 
 
                              slurm                  : Generate a slurm script for submission of each 
                                                           calculation to a queue. 
 
   -q or --partition     'queue name'    : For pbs and slurm run scripts, the name of the                        
                                                 queue or partition if the default queue is not        
                                                 being used. 



 154 

 
   -p or --prepmode                            : If present the run scripts are generated and placed 
                                                            in every directory, but the calculations are not 
                                                            submitted. 
 
2.2. Host-guest calculations 
 
Two main types of VM2 host-guest free energy calculation are available. One is regular 
VM2, which carries out iterative rounds of conformational searching until convergence; 
the other type carries out geometry optimizations of host-guest conformations constructed 
from ligand conformers read-in and processes them for free energy. The latter is much 
faster, but much less exhaustive in terms of sampling conformational space. In 
combination, there are two ways to seed these two VM2 calculation types with ligand 
conformers: multiple conformers randomly orientated in space, but placed at the center of 
geometry of the host – see Section 2.1. above, and a single conformer, based on the 
geometry in which it was prepared originally, and also placed at the center of geometry of 
the host. This provides for four different overall VM2 calculation schemes, which cover 
various types of use scenarios. 
 
2.2.1. Example run 
 
Go to the directory 
 
 run/2_vm2_runs 
 
This directory contains a python script to generate run directories for host-guest VM2 
free energy calculations, and a python script to step through the directories and run the 
calculations. Example usage is as follows: 
 
 python build_vm2_run_dirs.py  
 
will first populate the following four directories, which cover the calculation types 
described above, with the required subdirectories, input files, and data files to run.  
 
 /2_vm2_runs/fast_vm2_rndm 
 /2_vm2_runs/fast_vm2_single 
 /2_vm2_runs/vm2_rndm 
 /2_vm2_runs/vm2_single 
 
Note: For “_rndm” types, the corresponding pre-generation of ligand conformers – 
Section 2.1. - must already have occurred. 
 
Then the following command: 
 
 python run_vm2_calculations.py -s random -v fast -r slurm  
 
will step through the subdirectories of /2_vm2_runs/fast_vm2_snap, generating slurm 
scripts, and submitting the calculations to the batch queue. Similarly, any of the other 
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three calculations types may be run by setting the appropriate flags – see Section 2.2.2 
below. See Section 2.2.3 below for additional submission options through the -r flag. 
 
2.2.2. Options available for building VM2 directories 
 
The python script build_vm2_run_dirs.py can take a number of arguments 
for non-default control of the source of the system data etc.: 
 
   -d or --data     reference       : Populate 'input_data' directory using the 
                                                  data in the setup 'reference' directories 
                                                  e.g. /setup/ligands/prepareLigands/reference, 
                                                  and the ligand start conformer generation 
                                                  reference directory /run/1_ligand_confgen/reference 
                                                  and subsequently build the run directories 
                                                  with this data. 
 
                         new                : Populate 'input_data' directory using the new data in the                
     setup directories e.g. /setup/ligands/prepareLigands and 
    the ligand start conformer generation directory    
     /run/1_ligand_confgen/gen_ligand_start_confs_rndm 
                                                
                                                  and subsequently build the run directories 
                                                  with this data. (Default behavior.) 
 
                         reuse               : Reuse the data from an already populated 
                                                  'input_data' directory. 
 
 
   -s or --startconfs    random   : Requests run directory set up for VM2 free energy 
                                                  calculations where randomly oriented ligand conformers 
                                                  are placed at the host center of geomatry and are used to  
      generate starting host-guest conformations. 
 
                         single             : Requests run directory set up for VM2 free energy 
                                                  calculations where a single ligand starting conformation 
       is used based on the supplied ligand .crd     
                            file coordinates. The placement is set as the center of  
      geometry of the host molecule. 
 
                         all                   : Requests both types of directory to be set up. 
                                                  (Default behavior.) 
 
   -c or --clear         input        : Delete the contents of 'input_data' directory. 
 
                            rundirs        : Delete the contents of the run directories. 
 
                                   all         : Delete content from the 'input_data' directory 
                                                  and the run directories. 
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   -v or --vm2type    regular    : Requests run directory set up for regular VM2 
                                                  host-guest free energy calculations, which 
                                                  carry out extensive conformational searching. 
 
                                fast         : Requests run directory set up for fast VM2 
                                                  host-guest free energy calculations, which 
                                                  calculate free energies via geometry optimizing 
                                                  host-guest conformations generated from 
                                                  read-in ligand conformers previously generated. 
 
                                all           : Requests set up for both types of VM2 calculation. 
     
 
   -k or --keyfile       'ligand_key_filename'  : Name of text file containing the subset of  
      ligands in the series - one on each line (see  
      ligand_key_5.txt.) 
 
 
2.2.3. Options available for running VM2 calculations 
 
The python script run_ligand_confs_gen.py can take a number of arguments: 
 
   -s or --startconfs    random   : Requests that VM2 free energy calculations are run 
                                                  for the series where randomly oriented ligand conformers 
                                                  are placed in the active site and are used to generate 
                                                  starting protein-ligand conformations. 
       (Default behavior.) 
 
                                single        : Requests that VM2 free energy calculations are run 
                                                  for the series where a single ligand/guest conformation 
                                                  is placed at the host's center of geometry generating 
                                                  a single starting host-guest conformation. 
 
                                 all           : Requests both types of run be carried out. 
 
 
 
   -r or --runscript     bsh          : Generate and use bash shell scripts for submission 
                                                  of each calculation. (Default behavior.) 
 
                         csh                 : Generate and use c-shell scripts for submission 
                                                  of each calculation. 
 
                         pbs                 : Generate a pbs script for submission of each 
                                                  calculation to a queue. 
 
                         slurm             : Generate a slurm script for submission of each 
                                                  calculation to a queue. 
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   -q or --partition     'queue name'           : For pbs and slurm run scripts, the name of the  
           queue or partition if the default queue is not  
           being used. 
 
   -p or --prepmode                  : If present the run scripts are generated and placed 
                                                  in every directory, but the calculations are not 
                                                  submitted. 
 
 
   -v or --vm2type    regular    : Requests regular VM2 protein-ligand free energy 
                                                  calculations for the series, which carry out 
                                                  extensive conformational searching. 
 
                                fast         : Requests fast VM2 VM2 protein-ligand free energy 
                                                  calculations for the series, which  calculate 
                                                  free energies via geometry optimizing 
                                                  protein-ligand conformations generated from 
                                                  read-in ligand conformers snapped to a template 
                                                  scaffold. (Default behavior.) 
 
                               all             : Requests both types of VM2 calculation are run for 
                                                  the series. 
 
   -g or --gpu                             : If present requests use of CUDA enabled VM2              
       executable. 
 
   -o or --ompthreads    1          : If -g not set results in MPI parallelism only. 
                                                   Enforced for ligand only runs. 
 
                                     2          : If set will result in MPI+OpenMP run (8 MPI processes              
       (default), 2 OpenMP threads per process). If -g also set  
       will result in MPI+OpenMP+CUDA parallelism. 
 
 
   -m or --molsystems    complexes+ligands      | 
                                                                            | 
                                       complexes+hosts         | 
                                                                            | 
                                           hosts+ligand             | 
                                                                            | 
                                             complexes              |----> Run subset of the moleculer system  
          | types. 
                                                                            | 
                                                 ligands                | 
                                                                            | 
                                                 hosts                   | 
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                                                   all                    : Default. Run ligands, complexes, and       
           hosts. 
 
Example usage: 
 
    nohup python run_vm2_calculations.py -g -o 2 
 
Run default fast-random set of calculations (fast_vm2_randm directory) with 8 MPI 
process calculations for ligand calculations, but MPI+OpenMP+CUDA calculations for 
the complexes and the hosts. 
 
This run utilizes 8 MPI processes with 1 GPU per MPI process and 2 OpenMP 
threads per MPI process. It therefore requires 16 compute cores and 8 GPUs. 
 
3. Results Collection 
 
When the host-guest (ligand), host, and ligand VM2 free energy calculations for the 
complete ligand series have completed, the binding free energies may then be calculated, 
and the formatted files, e.g., .mol2, .pdb, .sdf, containing the associated molecular 
structures collected. 
 
The relevant directories and readme file are: 
 
 Sampl6/oa_gaff_vcharge /results 
 Sampl6/oa_gaff_vcharge /results/conformers 
 Sampl6/oa_gaff_vcharge /results/README.results 
 
3.1. Generate binding free energy spreadsheets and collect conformer files 
 
Go to the directory 
 
 Sampl6/oa_gaff_vcharge /results 
 
To generate spreadsheets and collect molecule conformer files for the “fast_vm2_rndm” 
calculations from Section 2.2.1 type: 
 
 python create_vm2_summaries.py -c fast_vm2_rndm  -l OA-G0 
 
Requirements: 
 
File containing experimental data:  sampl6_oa_experimental_data.txt 
 
The filename must contain the text “experimental_data”.  
The format is <hostname_ligandname>, <value>  e.g. 
 
OA_OA-G0, -5.68 
OA_OA-G1, -4.65 
OA_OA-G2, -8.38 
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OA_OA-G3, -5.18 
OA_OA-G4, -7.11 
: 
 
Output spreadsheets: 
 
 results/OA_TEMOA _fast_vm2_rndm_complex.csv 
 results/OA_TEMOA _fast_vm2_snap_host.csv 
 results/fast_vm2_rndm_ligand.csv 
 results/OA_TEMOA _fast_vm2_rndm_SUMMARY.csv 
 
The last of these contains the binding free energies. 
 
Output conformer files: 
 
For the protein, each ligand, and each host-ligand complex, formatted files (e.g. mol2, 
pdb, sdf, xyz) containing the lowest energy conformer, and the eight lowest energy 
conformers are written to: 
 
 results/conformers/fast_vm2_rndm/complexes 
 results/conformers/fast_vm2_rndm/ligands 
 results/conformers/fast_vm2_rndm/hosts  
 
3.2. Results generation options 
 
For the script create_vm2_summaries.py the following commandline argument is 
mandatory with the following options: 
 
    -c or --calctype       fast_vm2_rndm       : Identify the calculation type 
                                                                     to collect and summarize run 
                                   fast_vm2_single        data for. 
 
   vm2_rndm 
 
   vm2_single 
 
 
There are three additional non mandatory arguments: 
 
   -n or --receptorname           : Provide the name of the receptor 
                                                 e.g. for this case the hosts 
    are named “OA” and “TEMOA” 
    This is useful if more than one host 
                                                 and separate summary files are required 
                                                 for each host or if you want the results 
                                                 files labeled with the host name. 
 
   -l or --refligand                   : Provide the name of the reference 
                                                 ligand to be used in relative binding 
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                                                 affinity calculation i.e. for Delta(DeltaG) 
                                                 The default is no reference. 
 
   -g or --getconfs      <number of confs>     : The number of conformers to keep in the 
                                                 extracted formated conformer files e.g. 
                                                 .sdf, .mol2, .pdb. The default is 8 plus 
                                                 a set of formatted files each with the 
                                                 lowest energy conformer. 
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XII. VeraChem file formats 
 
1. VeraChem’s topology/parameter file (.top) format examples 
 
The .top file format specification is described in detail in Section II. The following is a 
specific example for a small (ligand) molecule and the CHARMM force field – note the 
columns 8 and 9 in the atom block, which, specific to CHARMM, contain van der Waals 
parameters for 1-4 interactions. 
 
          !NTITLE 1 
 !NATOM: 23 
    1 C6R    12.01100   -0.11100   -0.05000    2.04000   -0.10000    1.76000 
    2 C6R    12.01100   -0.11100   -0.05000    2.04000   -0.10000    1.76000 
    3 C6R    12.01100   -0.11300   -0.05000    2.04000   -0.10000    1.76000 
    4 C6R    12.01100   -0.11300   -0.05000    2.04000   -0.10000    1.76000 
    5 C6R    12.01100   -0.01000   -0.05000    2.04000   -0.10000    1.76000 
    6 C6R    12.01100    0.08800   -0.05000    2.04000   -0.10000    1.76000 
    7 C      12.01100    0.59800   -0.14100    1.87000 
    8 CT     12.01100   -0.25800   -0.09030    1.80000   -0.10000    1.75000 
    9 CT     12.01100    0.03700   -0.09030    1.80000   -0.10000    1.75000 
   10 NP     14.00670   -0.69000   -0.09000    1.83000   -0.10000    1.63000 
   11 O      15.99940   -0.51600   -0.15910    1.55000   -0.20000    1.36000 
   12 OS     15.99940   -0.35100   -0.15910    1.60000   -0.20000    1.36000 
   13 HA      1.00800    0.10900   -0.04200    1.33000 
   14 HA      1.00800    0.10900   -0.04200    1.33000 
   15 HA      1.00800    0.10900   -0.04200    1.33000 
   16 HA      1.00800    0.10900   -0.04200    1.33000 
   17 HA      1.00800    0.09100   -0.04200    1.33000 
   18 HA      1.00800    0.09100   -0.04200    1.33000 
   19 HA      1.00800    0.09100   -0.04200    1.33000 
   20 HA      1.00800    0.08700   -0.04200    1.33000 
   21 HA      1.00800    0.08700   -0.04200    1.33000 
   22 H       1.00800    0.33400   -0.04980    0.80000 
   23 H       1.00800    0.33400   -0.04980    0.80000 
 !NBOND: 23 
    1     3   880.000   1.38300 C6R  C6R 
    1     5   880.000   1.38300 C6R  C6R 
    1    13   740.000   1.08000 C6R  HA 
    2     4   880.000   1.38300 C6R  C6R 
    2     5   880.000   1.38300 C6R  C6R 
    2    14   740.000   1.08000 C6R  HA 
    3     6   880.000   1.38300 C6R  C6R 
    3    15   740.000   1.08000 C6R  HA 
    4     6   880.000   1.38300 C6R  C6R 
    4    16   740.000   1.08000 C6R  HA 
    5     7   772.000   1.46000 C6R  C 
    6    10   780.000   1.35500 C6R  NP 
    7    11  1280.000   1.22500 C    O 
    7    12   700.000   1.31900 C    OS 
    8     9   536.000   1.52900 CT   CT 
    8    17   680.000   1.09000 CT   HA 
    8    18   680.000   1.09000 CT   HA 
    8    19   680.000   1.09000 CT   HA 
    9    12   786.000   1.42000 CT   OS 
    9    20   680.000   1.09000 CT   HA 
    9    21   680.000   1.09000 CT   HA 
   10    22   931.200   1.00000 NP   H 
   10    23   931.200   1.00000 NP   H 
 !NTHETA: 37 
    3     1     5   140.000  2.094395 C6R  C6R  C6R 
    3     1    13    62.000  2.094395 C6R  C6R  HA 
    5     1    13    62.000  2.094395 C6R  C6R  HA 
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    4     2     5   140.000  2.094395 C6R  C6R  C6R 
    4     2    14    62.000  2.094395 C6R  C6R  HA 
    5     2    14    62.000  2.094395 C6R  C6R  HA 
    1     3     6   140.000  2.094395 C6R  C6R  C6R 
    1     3    15    62.000  2.094395 C6R  C6R  HA 
    6     3    15    62.000  2.094395 C6R  C6R  HA 
    2     4     6   140.000  2.094395 C6R  C6R  C6R 
    2     4    16    62.000  2.094395 C6R  C6R  HA 
    6     4    16    62.000  2.094395 C6R  C6R  HA 
    1     5     2   140.000  2.094395 C6R  C6R  C6R 
    1     5     7   140.000  2.094395 C6R  C6R  C 
    2     5     7   140.000  2.094395 C6R  C6R  C 
    3     6     4   140.000  2.094395 C6R  C6R  C6R 
    3     6    10   130.000  2.094395 C6R  C6R  NP 
    4     6    10   130.000  2.094395 C6R  C6R  NP 
    5     7    11   172.000  2.216568 C6R  C    O 
    5     7    12   120.000  1.919862 C6R  C    OS 
   11     7    12   162.000  2.171190 O    C    OS 
    9     8    17    75.000  1.932079 CT   CT   HA 
    9     8    18    75.000  1.932079 CT   CT   HA 
    9     8    19    75.000  1.932079 CT   CT   HA 
   17     8    18    66.000  1.881465 HA   CT   HA 
   17     8    19    66.000  1.881465 HA   CT   HA 
   18     8    19    66.000  1.881465 HA   CT   HA 
    8     9    12   160.000  1.910612 CT   CT   OS 
    8     9    20    75.000  1.932079 CT   CT   HA 
    8     9    21    75.000  1.932079 CT   CT   HA 
   12     9    20   118.000  1.889319 OS   CT   HA 
   12     9    21   118.000  1.889319 OS   CT   HA 
   20     9    21    66.000  1.881465 HA   CT   HA 
    6    10    22    60.000  2.094395 C6R  NP   H 
    6    10    23    60.000  2.094395 C6R  NP   H 
   22    10    23    36.000  2.052507 H    NP   H 
    7    12     9   166.000  2.022837 C    OS   CT 
!NPHI: 46 
    5     1     3     6     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    5     1     3    15     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   13     1     3     6     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   13     1     3    15     2.500   2.000   3.142 HA   C6R  C6R  HA 
    3     1     5     2     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    3     1     5     7     3.100   2.000   3.142 X    C6R  C6R  X 
   13     1     5     2     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   13     1     5     7     3.100   2.000   3.142 X    C6R  C6R  X 
    5     2     4     6     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    5     2     4    16     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   14     2     4     6     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   14     2     4    16     2.500   2.000   3.142 HA   C6R  C6R  HA 
    4     2     5     1     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    4     2     5     7     3.100   2.000   3.142 X    C6R  C6R  X 
   14     2     5     1     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   14     2     5     7     3.100   2.000   3.142 X    C6R  C6R  X 
    1     3     6     4     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    1     3     6    10     3.100   2.000   3.142 X    C6R  C6R  X 
   15     3     6     4     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   15     3     6    10     3.100   2.000   3.142 X    C6R  C6R  X 
    2     4     6     3     2.800   2.000   3.142 C6R  C6R  C6R  C6R 
    2     4     6    10     3.100   2.000   3.142 X    C6R  C6R  X 
   16     4     6     3     3.000   2.000   3.142 C6R  C6R  C6R  HA 
   16     4     6    10     3.100   2.000   3.142 X    C6R  C6R  X 
    1     5     7    11     1.300   2.000   3.142 O    C    C6R  C6R 
    1     5     7    12     0.500   2.000   3.142 X    C    C6R  X 
    2     5     7    11     1.300   2.000   3.142 O    C    C6R  C6R 
    2     5     7    12     0.500   2.000   3.142 X    C    C6R  X 
    3     6    10    22     0.500   2.000   3.142 X    C6R  NP   X 
    3     6    10    23     0.500   2.000   3.142 X    C6R  NP   X 
    4     6    10    22     0.500   2.000   3.142 X    C6R  NP   X 
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    4     6    10    23     0.500   2.000   3.142 X    C6R  NP   X 
    5     7    12     9     2.500   2.000   3.142 X    C    OS   X 
   11     7    12     9     2.500   2.000   3.142 X    C    OS   X 
   17     8     9    12     0.150   3.000   0.000 X    CT   CT   X 
   17     8     9    20     0.150   3.000   0.000 X    CT   CT   X 
   17     8     9    21     0.150   3.000   0.000 X    CT   CT   X 
   18     8     9    12     0.150   3.000   0.000 X    CT   CT   X 
   18     8     9    20     0.150   3.000   0.000 X    CT   CT   X 
   18     8     9    21     0.150   3.000   0.000 X    CT   CT   X 
   19     8     9    12     0.150   3.000   0.000 X    CT   CT   X 
   19     8     9    20     0.150   3.000   0.000 X    CT   CT   X 
   19     8     9    21     0.150   3.000   0.000 X    CT   CT   X 
    8     9    12     7     0.100   3.000   0.000 CT   CT   OS   C 
   20     9    12     7     0.330   3.000   3.142 X    CT   OS   X 
   21     9    12     7     0.330   3.000   3.142 X    CT   OS   X 
 !NIMPHI: 8 
    1     5    13     3   150.000   0.000   3.142 HA   X    X    C6R 
    2     4    14     5   150.000   0.000   3.142 HA   X    X    C6R 
    3     6    15     1   150.000   0.000   3.142 HA   X    X    C6R 
    4     2    16     6   150.000   0.000   3.142 HA   X    X    C6R 
    5     1     7     2   200.000   0.000   3.142 C    X    X    C6R 
    6     3    10     4   180.000   0.000   3.142 C6R  X    X    NP 
    7     5    12    11   294.000   0.000   3.142 C    X    X    O 
   10    22    23     6   180.000   0.000   3.142 C6R  X    X    NP 
 !NBFIX: 0 
 !NFINAL: 6 
         23         23         37         46          8 9999 
 !NDON: 
 
 
2. Definition of protein real/live atom sets  
 
The following provides the format for the file to identify the atoms to include in the 
calculation (real atoms), and which of these are mobile (live atoms). See Section VIII 2. 
 
#total no. of atoms in the protein 
numberOfAtoms 
3137 
#no of flexible atoms 
numberOfLiveAtoms 
645 
#list of flexible atoms 
listOfLiveAtoms 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
158 
378 
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379 
380 
382 
 : 
 : 
2943 
2944 
2955 
3135 
3136 
3137 
#number of real atoms 
numberOfRealAtoms 
2027 
#list of real atoms 
listOfRealAtoms 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
 : 
 : 
3096 
3097 
3098 
3099 
3135 
3136 
3137 
#end 
end 
 
 
3. Identify constrained (tethered) atoms sets  
 
The following provides the format for the file to identify sets of atoms to which 
constraints are applied. In case shown to sets of atoms are identified, one is a large set of 
503 atoms, the other a small set of 4 atoms. The type and strength of the constraints 
applied are defined in the .inp file (see Section VIII 14.) 
 
#Constrained atoms information 
#numProtein 
1 
#numLigand 
1 
 
#proteinid 
1 
 
#setid 
1 
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#numTetheredAtoms 
503 
#atomList 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
267 
268 
269 
270 
271 
 : 
 : 
2654 
2655 
2656 
 
#setid 
2 
#numTetheredAtoms 
4 
#atomList 
2686 
2689 
2692 
2695 
 
#ligandid 
1 
#numTetheredAtoms 
0 
#atomList 
 
#end 
end 
 
 
4. Identify atoms to exclude search drivers 
 
The following provides the format for the file to identify atoms which if present in a 
particular search driver results in the exclusion of that driver in the conformational 
search. (see Section VIII 7.) 
 
#Excluded Atoms information 
#numProtein 
1 
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#numLigand 
1 
 
#proteinid 
1 
#numExcludedAtoms 
1066 
#atomList 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
 : 
 : 
2682 
2683 
2686 
2689 
2692 
2695 
 
#ligandid 
1 
#numExcludedAtoms 
0 
#atomList 
 
 
#end 
end 
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XIV. Index 
 


	The standard formatted file types .xyz, .sdf, .mol, Macromodel .dat, and .crd containing previously generated conformers may be read in to provide a starting point for a new calculation.
	5. Run scripts

